¿Dónde ocurrió el Big Bang?

¿Hay alguna dirección, punto o lugar del Universo desde donde este provenga?, ¿dónde ocurrió?… ahora lo descubriremos, primero vamos a explicar qué es el Big Bang.

El Universo en su momento inicial estaba lleno de una energía y temperaturas infinitas. Se expandió y se enfrió, experimentando cambios de fase espectaculares. No fue una “gran explosión” como se suele decir, simplemente ocurrió un cambio de estado y comenzó la expansión del Universo. Por qué comenzó o que dio lugar a ese inicio sigue siendo un misterio para la astrofísica, lo que sí sabemos es lo que ocurrió después:

  • 10-35 segundos tras el cambio se fase el Universo se expande de forma exponencial durante un período llamado inflación cósmica. En ese momento nació el espacio.
  • Al terminar la inflación, los componentes materiales del Universo quedaron en la forma de un plasma de quarks-gluones, en donde todas las partes que lo formaban estaban en movimiento en forma relativista. Con el crecimiento en tamaño del Universo, la temperatura descendió, y debido a un cambio aún desconocido denominado bariogénesis, los quarks y los gluones se combinaron en bariones tales como el protón y el neutrón, produciendo la asimetría observada actualmente entre la materia y la antimateria. Las temperaturas más bajas condujeron a nuevos cambios de fase, que rompieron la simetría, así que les dieron su forma actual a las fuerzas fundamentales de la física y a las partículas elementales.
  • Tras esto, protones y neutrones se combinaron para formar  formas más complejas como los núcleos de deuterio y de helio, en un proceso llamado nucleosíntesis primordial. Al enfriarse el Universo, la materia gradualmente dejó de moverse de forma relativista y su densidad de energía comenzó a dominar gravitacionalmente sobre la radiación. Pasados 300.000 años, los electrones y los núcleos se combinaron para formar los átomos (mayoritariamente de hidrógeno). Por eso, la radiación se desacopló de los átomos y continuó por el espacio prácticamente sin obstáculos. Ésta es la radiación de fondo de microondas.

Al pasar el tiempo, algunas regiones más densas crecieron gravitacionalmente, haciéndose aún más densas, formando nubes, estrellas y galaxias. Los detalles de este proceso dependen de la cantidad y tipo de materia que hay en el Universo. El Universo tiene estos porcentajes: 4.6 % es materia ordinaria, un 23 % es materia oscura, y un 72.4 % es energía oscura.

Planck_history_of_UniversePulsar sobre la imagen para ver mejor los detalles, imagen de: http://www.esa.int/spaceinimages/Images/2013/03/Planck_history_of_Universe

Pero…¿Dónde ocurrió el Big Bang? Hemos descrito bastante resumidamente el Big Bang, pero ahora nos hacemos la gran pregunta, donde ocurrió, hay alguna dirección privilegiada en el Universo, algún punto desde donde viene, sabemos que todo se expande pero… desde que punto. La respuesta a estas preguntas es la siguiente:

  • El Big Bang no ocurrió en ningún punto en el espacio, ocurrió en un punto en el tiempo (hace 13.800 millones de años), por tanto no hay un centro del Universo. En todos los puntos del espacio en el que nos encontremos sí observamos las galaxias que nos rodean vemos que se alejan siempre desde donde lo observemos. Por tanto podemos decir que somos el centro del Universo observable, todo se aleja desde nuestro punto de observación, pero si por ejemplo se pudiera llegar a una de las galaxias que observo que se aleja y observar desde allí como se mueve el resto ocurriría que esa galaxia volvería a ser el centro del Universo observable, todo se alejaría de ella. Por tanto el Big Bang no tiene un punto de inicio tiene un punto en el tiempo.

logi

 

El Geoide: el mapa de gravedad de la Tierra

Antiguas civilizaciones se pensaban que la Tierra era plana, porque habían preguntas que en esas épocas eran complicadas de contestar, habían muchos inconvenientes:

¿Extensión infinita? No tiene fin, hay un mar enorme y después más y más agua y agua… ¿extensión finita? el fin de la Tierra en el mar luego hay terribles monstruos y precipicios enormes… ¿Cómo se sostiene? ¿sostenerse en el aire algo tan grande?¿Y las estrellas siempre son las mismas?. Todas estas preguntas se las hacían en la antigüedad. La teoría que lo arreglaba casi todo era la siguiente: Los hindúes la imaginan apoyada sobre cuatro pilares que a su vez estaban sobre cuatro elefantes y éstos sobre una tortuga gigante que nadaba en un océano enorme. Sorprendente pero para ellos muy real.

Captura

No fue hasta los antiguos griegos cuando realmente se fue consciente de que la Tierra era redonda. Aunque antes se llegó a pensar que era cilíndrica,  la sencilla explicación de suponer que la Tierra se curva en la dirección Norte-Sur es lo que llevó al filósofo Anaximandro de Mileto a sugerir -erróneamente-que la Tierra tenía forma cilíndrica. Pero la solución de que la Tierra era esférica la dieron los navegantes. Cuando se alejaban los barcos iban desapareciendo en el horizonte y lo último que se veía eran las velas, por tanto estaban “bajando” por la curvatura de la Tierra. Desde la orilla se veía menos parte del barco y desde una montaña muy alta se veía aun más parte.

Captura

Por otro lado, los astrónomos griegos también pensaron que la mejor forma de explicar los eclipses de Luna era suponer que la Tierra se situaba entre ésta y el Sol y que su sombra proyectada por este astro, caía sobre la Luna y la eclipsaba. Como la proyección de esta sombra siempre era circular, confirmaba, una vez más, el carácter esférico de la Tierra.

La primera prueba directa de la esfericidad de la Tierra tardaría en llegar casi diecinueve siglos. En 1522 Magallanes y Juan Sebastian el Cano realizan la circunnavegación de la Tierra, ¡la Tierra es redonda!

Y la prueba definitiva: Imagen desde el Apolo 11 en 1969:

Captura

¿Pero es realmente absolutamente esférica?, realmente la Tierra está achatada por los polos, como vemos en la siguiente figura:

la tierra

Y ahora vamos a la forma de la Tierra sí consideramos la gravedad de la Tierra y exageramos un poco las distancias, la Tierra es un Geoide. El geoide es la superficie de nivel de altitud cero, que coincide con la superficie media de los océanos en equilibrio prolongada por debajo de los continentes y con la misma gravedad en todos los puntos:

geoide

Una forma realmente curiosa 🙂 sí eliminamos lo océanos y dejamos todo al mismo nivel equipotencial,  tenemos esta forma tan curiosa, nuestro planeta sería un Geoide.

Imagen exagerada para notar las diferencias de gravedad.

Para saber más:

El geoide: por qué un mapa de la gravedad de la Tierra produce un planeta en forma de patata

cropped-logi.jpg

Descuento en compra de telescopios de iniciación

La casa Levenhuk de venta de telescopios básicos de iniciación a la astronomía nos ha dado un descuento para nuestros seguidores del 10% en sus telescopios, tan solo tenéis que escribir la palabra UNIVERSO sí realizáis alguna compra en su tienda, el descuento es válido hasta el 30 de junio:              Levenhuk telescopios

telescopios y cartas

*UNIVERSO Blog no se hace responsable de la políticas de privacidad de páginas de terceros, los procesos de venta, enlaces a esas páginas y accesos.

logosss

 

UNIVERSO Blog cumple 4 años

UNIVERSO blog cumple 4 años, ha ido creciendo poco a poco, ya lleva más 930 entradas publicadas y más de 800.000 visitas en la web, así como más de 138.000 seguidores en esta su página de facebook. También en el ranking mundial de páginas web vamos bastante bien, estamos actualmente en la posición 750.000 del mundo 🙂 aunque suele fluctuar bastante según el día, se puede consultar aquí:

https://www.alexa.com/siteinfo/josevicentediaz.com sí tienes alguna web también puedes consultar el vuestro, es algo curioso.

Gracias a tod@s los que lo seguís por vuestro tremendo apoyo.
Página web: https://www.josevicentediaz.com
facebook: https://www.facebook.com/astronomicas/
Twitter: https://twitter.com/ExpeAstronomica

 

 

Los oculares de los telescopios

El ocular es el elemento que recoge la imagen generada por el objetivo y la hace accesible para el observador, que coloca el ojo tras el ocular. El ocular es siempre una lente o conjunto de lentes y es un elemento que podemos intercambiar para obtener diferentes aumentos en nuestro telescopio.

La distancia entre el objetivo (lente o espejo) y el plano focal se denomina distancia focal del telescopio (Ft). Esta distancia es importante pues nos ayudará a calcular los aumentos o amplificación del telescopio.

CapturaEsquema básico de un telescopio refractor la imagen aparece invertida en el plano focal (P), posición que coincide con el foco del ocular para una mejor visualización del observador.

Para observar el objeto astronómico debemos colocar un ocular, estos llevan escritos unos números, la distancia focal del ocular.Captura Imagen: Oculares de diferentes distancias focales (17mm, 21mm y 24mm).

 Para saber los aumentos del telescopio hay que dividir la distancia focal del telescopio entre la del ocular:

         Aumentos = (F telescopio/ F ocular)

 Por ejemplo sí a un telescopio con una distancia focal de 1000 mm  le colocamos un ocular de 20mm obtendremos un aumento de: (1000/20) = 50x, (los aumentos se suelen nombrar con la letra “x” detrás del número), sí colocamos un ocular de 10 mm tendríamos un aumento de 100x, es decir a menor distancia focal del ocular obtenemos más amplificación.

Estos aumentos o amplificación no significan que el objeto se vea tantas veces más grande, sino que es la imagen que observaríamos si estuviéramos tantas veces más cerca. Es decir sí un objeto que se encuentre por ejemplo a 300.000 km lo observamos con un aumento de 50x lo veríamos como si estuviéramos a 6000 km del objeto, valor obtenido dividiendo la distancia del objeto entre el aumento utilizado.

Podemos variar los oculares para tener diversas amplificaciones de la imagen astronómica, es importante disponer de varios oculares de diversas potencias (por ejemplo 40mm, 25mm y 6mm). En primer lugar para encontrar el objeto usaremos un ocular de baja potencia, seguidamente iremos variando el tipo de ocular según las amplificaciones que deseemos obtener y el tipo de objeto a observar.

 Captura

Colocación de oculares en el telescopio.

En el ocular aparte de la especificación de la distancia focal aparece una letra, esta nos indica el tipo de ocular, la siguiente tabla nos indica los tipos de oculares más comunes:

tipos de ocularesCapturaOculares Plöss de 25 y 6.5 mm, muy utilizados por su calidad y precio.

Adicionalmente a los oculares podemos interponerles una lente de Barlow, esta  nos permite multiplicar la focal de nuestro telescopio en función de la relación indicada por el fabricante (1.5x, 2x, etc). La más utilizada es la 2x (duplicador). Lo que conseguimos anteponiendo una lente de Barlow 2x a nuestros oculares es doblar su poder de aumento al duplicar la distancia focal, pero hay que tener cuidado pues suele provocar perdida de luminosidad con lo que es importante ir variando oculares hasta encontrar el que defina mejor la imagen. Funciona mejor con oculares de potencia media.

Captura                                                 Lente Barlow 2x

Hay que recordar que lo importante en un telescopio, más que los aumentos, es el tamaño de la abertura ya que colecta más luz y podemos observar objetos más débiles. Muchos aumentos provocan pérdida de luz y campos de visión más pequeños.

Para observar los objetos que estén muy cerca del cenit o en el cenit se puede colocar un prisma cenital para observarlos cómodamente. Este se coloca ante el ocular y desvía la luz 90º. El inconveniente que tiene es que resta luz y campo.

Captura Prisma cenital y ubicación en telescopio

Espero que esta información sobre oculares os sirvan para elegir los más adecuados para vuestra observaciones.

Telescopios interesantes en Amazon:

Venta de telescopios en Amazon.es

Bresser Pollux 150/1400 EQ2 – Telescopio

Celestron Travel Scope 60 – Telescopio

National Geographic 9062000 – Telescopio refractor 70/350

cropped-logosss.jpg

La importancia de la abertura de los telescopios

El diámetro de la abertura de entrada del telescopio es muy importante para determinar qué objetos puedo observar. Os voy a dar una guía para que sepáis la importancia de esto en los telescopios.

abertura telescopioPara ello hay que tener en cuenta una serie de parámetros muy importantes con sus formulas para calcularlos según la abertura del telescopio que tengáis o el que queráis adquirir:

1) Para determinar la luminosidad del telescopio (poder de captación de luz) debemos dividir la distancia focal del telescopio (Ft) entre diámetro de la abertura (D), a esta división se la llama razón focal:                      Razón focal = Ft/D

Por ejemplo un telescopio de F=1000mm y D=150mm tendrá una razón focal de 6.6, sí tenemos otro telescopio con un objetivo D=200  y con la misma F se tendría una razón focal más pequeña  (Razón focal = 5) y por tanto sería más luminoso.(A menor razón focal más luminosidad)

Cuanto mayor sea la abertura y corta la focal más luminoso será nuestro telescopio. Los fabricantes de telescopios suelen describir sus telescopios en términos de razón focal, usando la siguiente terminología según el telescopio: f/6, f/8, etc. con este valor podemos conocer la distancia focal del telescopio simplemente multiplicando por el diámetro del objetivo. Por ejemplo un telescopio de 100mm de abertura y razón focal especificada por el fabricante como f/5 tendrá  una distancia focal de 500 mm.

2) Otro factor importante es la Resolución del telescopio (R). Llamamos resolución al poder que tiene el telescopio en separar dos objetos que están muy juntos. Esta medida se da en segundos de arco[1] (‘’) y viene determinada por el diámetro de la abertura, a mayor abertura mayor resolución del telescopio. Un segundo de arco es una cantidad muy pequeña, es aproximadamente el tamaño de una moneda vista a varios kilómetros de distancia.

La formula teórica es la siguiente:  R (“) = (0.138 / D)

Donde 0.138 es una constante para telescopios ópticos y D es la abertura en metros.

Por ejemplo partiendo de esta formula si tenemos un telescopio de diámetro D= 1m la resolución será de 0.138 segundos de arco, sí por el contrario tenemos un telescopio de D = 0.5 m (más pequeño que el anterior) la resolución sería de 0.276 segundos de arco. Por tanto con el telescopio de

D= 1m tendremos mayor poder de separación pues podremos ver objetos separados 0.138 “.

Este valor es siempre teórico pues la turbulencia atmosférica provoca que tengamos peores resoluciones que las indicadas en las especificaciones del telescopio.

Captura

Estrella Albireo (Cisne), a simple vista parece solo una estrella pero con telescopios se aprecia que tiene una acompañante a 35” de arco.

Captura

En el cielo la luna y el Sol tienen el mismo tamaño aparente (0.5º o 30 minutos de arco). Con el brazo extendido y usando el pulgar podríamos tapar la  luna o el Sol.

 Como hemos visto la abertura del telescopio es muy importante a la hora de captación de luz y de resolución de detalle. Sí el telescopio capta más luz podemos ver estrellas de magnitud aparente más baja. Cuando hablamos de magnitud aparente de las estrellas nos referimos al brillo aparente que la estrella presenta. Esta escala de magnitudes fue introducida por el astrónomo griego Hiparco el año 129 a.c., este dividió las estrellas que se ven a simple vista en seis clases según su brillo, desde la primera magnitud (mayor brillo) hasta la sexta magnitud (menor brillo). Fue la primera escala de magnitudes de estrellas, pero no fue hasta 1856 cuando el astrónomo inglés Norman Pogson definió matemáticamente esta escala. Obteniendo valores negativos para las estrellas más brillantes y valores muy bajos para las más débiles, así el Sol tiene magnitud aparente -26, la luna llena -12, la estrella Vega 0 y la estrella polar magnitud +2. Los objetos más débiles observados son de magnitud +30 y han sido observados por el telescopio espacial Hubble.

3) Para calcular la magnitud mínima que se puede observar con nuestro telescopio usaremos esta fórmula teórica: Ml = 7.10 + 5 log D

Donde D es la abertura del telescopio en centímetros. Este valor es teórico ya que la perturbación atmosférica nos hará ver menos estrellas de las teóricas, normalmente para realizar observaciones de calidad se debe ir a lugares muy oscuros y alejados de ciudades. Los observatorios profesionales tienen sus telescopios en lugares a gran altitud y con climas muy estables.

Otro factor que puede afectar a la magnitud limite que podemos ver es nuestra propia capacidad visual, nuestro ojo tarda alrededor de 20 minutos en adaptarse a la oscuridad, a partir de esos minutos podremos apreciar más estrellas a simple vista y a través del telescopio. Con el telescopio observaremos objetos más débiles al aumentar la abertura y obtendremos mayor resolución, como podemos apreciar en la siguiente tabla teórica. Estos resultados son para objetos puntuales, ya que los objetos más extensos como galaxias y nebulosas tienen repartida en su superficie la magnitud aparente:

caracterisitcas Resumen de Formulas:

Razón focal = ( F telescopio / D )

Resolución (“) = (0.138 / D)  (D en metros)

Magnitud mínima =7.1 + 5 log D   (D en centímetros)

Espero que todo esto os sirva para elegir qué telescopio adquirir o saber que puede observar vuestro telescopio.

Síguenos en: Facebook

cropped-logi.jpg

 

Las 5 entradas más vistas de UNIVERSO Blog

Las entradas más vistas de UNIVERSO Blog son muy variadas e interesantes, la primera más vista trata de los nombres de las fases de la Luna, como sabéis hay cuatro nombres básicos pero hay muchos más, en la entrada se explica cuales son y cuando se pueden ver.

También hablamos de los cometas, unos objetos fascinantes que de vez en cuando visitan las cercanías del Sol y los podemos ver, en la entrada se explican qué son y su clasificaciones. La distancias en el sistema solar también interesan mucho, saber a cuanta distancia en minutos luz de los planetas del sistema solar nos hace apreciar las enormes distancias entre estos objetos, por ejemplo Júpiter está a una media de 630 millones de kilómetros de la Tierra, esto en minutos luz es el simple número y más fácil de recordad de 35 minutos luz.

El cuarto tema más visto es la entrada sobre el planeta Marte, el planeta rojo ha fascinado siempre a la humanidad, un planeta en el que tal vez en el pasado pudo haber vida, y un planeta que tal vez sea el siguiente lugar para visitar por los seres humanos después de llegar a la Luna. El quinto tema más visto trata de cómo saber el firmamento que había en una fecha determinada, explicamos cómo se puede ver usando varias herramientas y programas de simulación del firmamento.

 

El pase de diapositivas requiere JavaScript.

Síguenos en: Facebook

cropped-logi.jpg

 

 

La ilusión óptica de la Luna y el Sol sobre el horizonte

Seguro que todos os habéis maravillado cuando habéis visto a la Luna o al Sol sobre el horizonte con un tamaño impresionante, majestuosos y esplendidos para una espectacular foto. Sin embargo cuando ascienden en el cielo se ven mucho más pequeños que cerca del horizonte, dejando unas fotos menos bonitas… pero sí os digo que la Luna y el Sol tienen el mismo tamaño aparente en el horizonte que en lo alto del cielo ¿os lo creeríais?… Pues si son iguales.

Esto es debido a un efecto óptico, a una ilusión. Para ello no tenéis más que mirar el siguiente dibujo, y observar cual de las dos esferas centrales es más pequeña.

lusiónEste diagrama representa el llamado efecto Ebbinghaus. Las esferas centrales amarillas son del mismo tamaño. 

Seguramente os quedáis con la esfera de la izquierda como la más diminuta, pero sin embargo ambas esferas son exactamente iguales. Sí esto lo extrapolamos al caso de la Luna y el Sol ocurriría lo mismo, os lo explico. Cuando podemos comparar el tamaño de un objeto con algo cercano lo vemos mas grande, así cuando la Luna o el Sol están cerca del horizonte lo podemos comparar con montañas, casas…. y parece aun más grande, al ascender por el cielo ya no lo podemos comparar y nos parece más pequeña. Así en el dibujo de las esferas, las esferas más cercanas a la central hacen que parezca más grande que las esferas más grandes y alejadas de la esfera del centro… es todo una ilusión de nuestro cerebro.

Podemos incluso tratar de medir el tamaño del Sol y la Luna para comprobarlo. En el cielo la luna y el Sol tienen el mismo tamaño aparente (0.5º o 30 minutos de arco). Con el brazo extendido y usando el dedo índice podríamos tapar la  luna o el Sol tanto en el horizonte como en lo alto del cielo.

Captura

El cielo es una esfera por tanto las medidas de distancias entre estrellas se miden en grados, nuestra mano nos puede decir esas distancias. Extendemos el brazo hacia el cielo y podemos medir así:Captura

Como veis con un dedo podemos tapar el Sol y la Luna, ya que miden medio grado y nuestro dedo indice 1º comprobando así que el tamaño es el mismo en el horizonte y en lo alto del cielo, no tenéis más que probarlo. 🙂

cropped-logi.jpg

 

Un Helicóptero para explorar Marte

Con la misión Mars 2020  de la NASA que será lanzada en febrero de 2021, viajará un pequeño helicóptero para explorar el planeta rojo. Marte tiene una atmósfera mucho más ligera que la de la Tierra con lo que se ha diseñado un helicóptero con unas características muy especiales, será el primer objeto en volar en otro mundo.

Este es un proyecto del Laboratorio de Propulsión a Chorro de la NASA tras cuatro años de diseño y pruebas. El helicóptero pesa muy poco, unos 1,8 kilogramos y sus hélices giraran a casi 3.000 r.p.m., aproximadamente 10 veces la velocidad de un helicóptero en la Tierra. Para tener autonomía tiene instaladas unas células solares para cargarse durante el día marciano y mecanismos de calentamiento para las frías noches marcianas. También tendrá capacidad de recibir e interpretar comandos desde la Tierra con lo que se asegura su total autonomía a distancia.

El récord de altitud para un helicóptero volando en la Tierra es de aproximadamente 12 km, pero la atmósfera de Marte es solo un uno por ciento la de la Tierra, así que cuando el helicóptero marciano vuele lo hará como si estuviera a 30 km de altura en la Tierra. Para hacerlo volar a esa baja densidad atmosférica se ha diseñado lo más ligero posible y al mismo tiempo con una gran potencia.

 

Para saber más:

Misión 2020

cropped-logi.jpg

 

El impresionante cúmulo globular M3

Los cúmulos globulares son grupos casi esféricos de cientos de miles (o millones) de estrellas que están ligadas entre sí y que orbitan en torno a las galaxias de manera similar a los satélites. Son agrupaciones de las estrellas más viejas de la galaxia, con edades superiores a los 10.000 millones de años, ya que se formaron a la par que nuestra galaxia. En la Vía Láctea se conocen cerca de 150 grupos de este tipo, aunque en otras galaxias hay cientos más incluso miles, por ejemplo la galaxia de Andrómeda tiene unos 500 y en la galaxia M87 se cuentan por miles.

Los cúmulos globulares se encuentran en el halo galáctico, muy por encima y por debajo del disco delgado de la galaxia que contiene la mayoría de las estrellas y los cúmulos abiertos más jóvenes.

Pues uno de los más espectaculares que podemos observar en nuestra galaxia es el cúmulo globular M3, que se encuentra a 33.000 años luz de nosotros y contiene entorno a 500.000 estrellas.

m3Créditos: M3 taken by Robert J. Vanderbei

Lo podemos encontrar en la constelación de Canes Venatici junto a las constelación de Boyero, se puede observar con buenos prismáticos y con telescopios de apertura media.

m3 ubicación

Estos cúmulos tan ancianos contienen una gran cantidad de estrellas rojas de baja masa y estrellas amarillas de masa intermedia. Los cúmulos globulares son objetos muy antiguos y su estudio es importante para saber la evolución de las galaxias.

logi