El espectacular eclipse de Luna del 27 de julio

El 27 de julio de 2018 tendrá lugar un precioso eclipse total de Luna, este será visible en  forma de eclipse total a partir de las 21h30m en Europa, África y  Asia excepto su extremo septentrional y Australia, y de forma parcial en  África oriental, Asia, América del sur y Oceanía.

zonas eclipseZonas de la Tierra donde podrá verse el eclipse de Luna, gráfico del Observatorio Astronómico Nacional (IGN).

lunar eclipse
Photo by Johannes Plenio on Pexels.com

En España el eclipse total comenzará a las 21:30h con la Luna ascendiendo por el horizonte sureste y el Sol poniéndose. Durará bastante 1h y 43 minutos, siendo uno de los más largos del siglo. El máximo del eclipse ocurrirá a las 22h21m y el último contacto con la totalidad de la sombra será las 23h13m, después podremos observar una tenue sombra hasta las doce de la noche.

No se necesita ningún equipo especial para observar los eclipses lunares. Estos ocurren cuando la luna pasa por la sombra de la Tierra y se pueden ver directamente a simple vista, con telescopios o prismáticos.

La luna se vuelve de color rojo intenso o marrón rojizo durante los eclipses, en lugar de oscurecerse por completo. Eso se debe a que parte de la luz solar que atraviesa la atmósfera de la Tierra se curva alrededor del borde de nuestro planeta y cae sobre la superficie de la luna. La atmósfera de la Tierra también dispersa más luz de longitud de onda más corta (en colores como verde o azul), lo que queda es la longitud de onda más larga, el extremo más rojo del espectro, que es el color que apreciamos sobre la Luna.

No os perdáis este precioso espectaculo!

Para saber más:

Observatorio astronómico nacional

cropped-logi1.jpg

 

Anuncios

La preciosa constelación de la Lira

La constelación de Lira data de la antigüedad, hay muchos escritos que hablan de ella, según la mitología griega se trata del instrumento de cuerda inventado por Hermes y que su hermano Apolo regaló  a Orpheus (según la mitología el dios de la música). LyraLa constelación de Lira y su imagen mitológica (La Lira)

Esta pequeña constelación tiene objetos muy interesantes, posee la quinta estrella más brillante del firmamento, la preciosa estrella azul Vega. Esta estrella azulada está a 26 años luz de nosotros, y marca el celebre triángulo de verano siendo uno de los vértices del triangulo, que une nuestra estrella con Deneb en Cisne y la estrella Altair en la constelación del Águila. Marcando, cuando vemos las tres constelaciones en todo su esplendor, el inicio del verano en el Hemisferio norte, por tanto en el mes de junio las veremos al anochecer ascendiendo por el horizonte Este.

Nuestra estrella, el Sol, en su desplazamiento alrededor de la galaxia se mueve hacia la estrella Vega a una velocidad de 20km/s con relación a las estrellas cercanas, por tanto nuestro sistema solar se mueve en dirección a esta estrella azulada.

liraConstelación de Lira, podemos ver arriba a la estrella vega, y entre las estrellas Sulafat y Sheliak podemos encontrar con telescopios la famosa nebulosa del anillo (M57). Imagen de stellarium.

Tenemos vario objetos interesantes por ejemplo una estrella doble observable con prismáticos, delta Lirae, formada por dos estrellas no relacionadas, una blanco azulada  a 880 años luz y otra gigante roja a 720 años luz. Pero el objeto más espectacular de la constelación es sin duda la Nebulosa del Anillo (M57), una nebulosa planetaria a 2283 años luz de nosotros.

M57_hubble_NASANebulosa del anillo (M57). Creditos de la imagenNASAESA, and the Hubble Heritage (STScI / AURA)- ESA / Hubble Collaboration

Como veis es todo un espectáculo observar esta preciosa constelación veraniega :-).

cropped-logi1.jpg

La defensa planetaria de la Tierra a prueba en un asteroide binario

Se está preparando la primera misión a un asteroide para practicar la defensa planetaria contra estos objetos tan peligrosos para la Tierra.

La misión internacional de evaluación de impacto y desviación de asteroides (AIDA) tiene como objetivo probar si es posible cambiar la órbita de un asteroide al impactarlo a gran velocidad. Tener esta técnica lista para ser empleada en caso de ser necesario, puede ser crucial para garantizar la seguridad de nuestro planeta.
AIDA es una misión de doble nave espacial compuesta por la nave espacial DART de la NASA, que impactará en el cuerpo más pequeño de un sistema de doble asteroide llamado Didymos, y la nave espacial ESA Hera que llevará a cabo una encuesta detallada posterior al impacto, y estudiará el propiedades exteriores e interiores de ambos cuerpos en el sistema

Los asteroides binarios Didymos son dos objetos, uno de 780 m y otro que orbita al objeto más grande, este mide 160 m. Contra la Luna más pequeña se lanzará la misión de choque para estudiar como tras ese impacto ha cambiado la órbita, esto lo hará en octubre de 2022 la misión de la NASA llamada Doble Asteroid Redirection Test, o DART. El impacto dará lugar a un cambio en la duración de la órbita de Didymoon alrededor del cuerpo principal. Los observatorios terrestres de todo el mundo verán la colisión, pero a una distancia mínima de 11 millones de kilómetros.

choqueCréditos: ESA-ScienceOffice.org

Para cuando Hera llegue a Didymos, en 2026, Didymoon habrá alcanzado un significado histórico: el primer objeto en el Sistema Solar en tener su órbita desplazada por la acción humana. Hera también medirá el cráter dejado por DART a una resolución de 10 cm, para dar una idea de las características de la superficie y la composición interna del asteroide

hera asteroide examinarHera analizando el cráter de impacto. Créditos: ESA-ScienceOffice.org

Asteroides peligrosos más para la Tierra, los NEAs

Los NEAs (Near Earth Objects-objetos cercanos a la Tierra), son asteroides eyectados del cinturón principal de asteroides, o cometas extintos provenientes del cinturón de Kuiper  que se encuentran en órbitas muy cercanas a la Tierra y algunos de ellos incluso llegan a cruzan su órbita, con el consiguiente peligro de impacto. Suelen ser órbitas excéntricas y con perihelios cerca de 1,3 UA. Los NEAs de tipo asteroidal provienen del Cinturón principal ya que debido a resonancias con Júpiter varían su órbita y se trasladan a órbitas menores de 1,3UA.

El cinturón principal de asteroides tiene unos huecos, los llamados huecos de Kirkwood que son las zonas donde se producen estas resonancias,  cuando un asteroide entra en esos huecos es lanzado por Júpiter hacia el interior del Sistema Solar o fuera de él, ya que va variando la órbita del asteroide. Una vez convertidos en objetos cercanos a la Tierra sobreviven en su órbita unos pocos millones de años hasta que son eliminados por degradación orbital  colisionando con el Sol o con los planetas interiores.

Podemos agruparlos en tres grupos:

Tipo meteoroide, que son de tamaño menor a 50 m.

Tipo asteroide, que pueden ser tamaños entre 50 m y decenas de Kilómetros.

 –Tipo cometa, que son cometas extintos que ya no tienen elementos volátiles y que han quedado atrapados en órbitas cercanas al Sol.

Nos centraremos en los NEAs tipo asteroide. Estos se clasifican en tres grupos: Amor, Apolo y Atenas (llamados grupo AAA), desde los más alejados a la tierra como es el caso del tipo Amor, hasta los más cercanos y peligrosos que son los de tipo Atenas (o Atón). En la figura podemos ver las órbitas de estos asteroides:

órbitas de NEAs Órbitas de los NEAs-figura del autor.

La misión de impacto en este asteroide binario nos ayudará a luchar contra un posible impacto contra la Tierra, que de producirse podría ser devastador para la vida en el planeta, con lo que tenemos que empezar a tomarnos muy enserio la amenaza de los asteroides.

Para saber más:

Vídeo de la misión: https://www.esa.int/spaceinvideos/content/view/embedjw/503101

 

El precioso “triángulo” que se puede ver en el cielo del verano

Por fechas de finales o mitad de junio y sobre las 22h comienzan a verse sobre el horizonte Este del hemisferio norte y ascendiendo a las tres constelaciones del verano por excelencia: Cisne, Lira y Águila. Ambas forman el triángulo de verano, los vértices del cual lo forman las estrellas Vega en Lira, Deneb en Cisne y Altair en Águila.

triángulo de veranoEl triángulo de verano, imagen de stellarium.

Los vértices los conforman tres fabulosas estrellas:

Vega: Se trata de una estrella azul, es la quinta más brillante del cielo nocturno (tiene magnitud aparente 0.00), y se encuentra relativamente cerca, a tan solo 25 años luz. Ha sido muy estudiada por los astrónomos, y fue la primera estrella en ser fotografiada. Ha sido una estrella muy importante pues debido al movimiento de precesión de la Tierra fue la Estrella Polar (estrella que marca el norte) alrededor del año 12000 A.C. y volverá a serlo alrededor del año 13700 D.C.

Deneb: Es una supergigante blanca está situada a 1425 años luz de distancia, y tiene una luminosidad 54.400 veces superior a la del Sol. Sí se colocaran todas las estrellas, incluido el Sol, a la misma distancia Deneb tendría un brillo impresionante y al Sol casi no lo veríamos.

Altair:  Está a 16 años luz  del Sistema Solar, acercándose a razón de 26,1 m/s. Es una estrella blanca  muchísimo más joven que nuestro Sol, con sólo 630 millones de años de edad.

triangleImagen: APOD NASA, junio 27 de 2015: http://apod.nasa.gov/apod/ap150627.html

Todo un espectaculo tratar de encontrar en estas calurosas noches de verano el famoso triángulo de verano.

cropped-logi1.jpg

Tipos de monturas de telescopios

El cuerpo del telescopio se posa sobre una montura, que es la parte mecánica que se encarga del movimiento controlado del telescopio. La montura es una parte muy importante del telescopio pues nos permite observar los objetos con total estabilidad y el seguimiento de estos.

Tenemos dos tipos básicos de montura: Montura Altazimutal y Montura Ecuatorial.

Montura Altazimutal

Estas monturas utilizan coordenadas horizontales con movimientos en dos ejes: el horizonte en acimut de 0º a 360º y la altura desde el horizonte al cenit (de 0 a 90º).

CapturaEste sistema de ejes aunque parezca sencillo tiene la complicación de que para el seguimiento del objeto es necesario actuar simultáneamente sobre los dos ejes. La imagen rota en el plano focal con lo que tenemos que compensar este movimiento, para esto se suele utilizar un mando para el seguimiento del objeto una vez encontrado. Sí tenemos un telescopio motorizado tipo Goto sigue perfectamente el movimiento de las estrellas, tan solo para alinearlo debemos dejarlo en forma horizontal enfocado hacia el norte y añadir al ordenador nuestras coordenadas geográficas, a partir de ahí el telescopio encontrará todas la estrellas a partir de un par de estrellas de referencia. Este tipo de monturas es la más utilizada en los observatorios profesionales, por su simpleza en la mecánica.

    Captura              Telescopios de montura altazimutal: (1)  manual, (2) robotizado sistema GOTO y (3) modelo Dobson muy popular en astronomía por su fácil manejo.

Montura Ecuatorial

Las estrellas tienen un movimiento aparente alrededor de la estrella polar en forma de circulo, a este movimiento se le denomina moviendo diurno de las estrellas. Mediante la montura ecuatorial podemos mover el telescopio en el sentido de esa rotación. Esta montura tiene dos ejes, el eje de ascensión recta A.R. (eje polar)  y el eje de declinación.

CapturaCaptura 

Montura ecuatorial alemana EQ, sí el eje polar está paralelo al eje del mundo su inclinación será igual a la latitud del lugar.

Un giro alrededor del eje polar  permite compensar el movimiento diurno del firmamento.

CapturaEjemplo de una montura ecuatorial

Te recomiendo:

TELESCOPIO EN AMAZON:

cropped-logi1.jpg

Tipos de oculares y filtros para telescopios

Podemos variar los oculares de los telescopios para tener diversas amplificaciones de la imagen astronómica, es importante disponer de varios oculares de diversas potencias (por ejemplo 40mm, 25mm y 6mm). En primer lugar para encontrar el objeto usaremos un ocular de baja potencia, seguidamente iremos variando el tipo de ocular según las amplificaciones que deseemos obtener y el tipo de objeto a observar.
Captura

Colocación de oculares en el telescopio.

En el ocular aparte de la especificación de la distancia focal en mm nos aparece una letra, esta nos indica el tipo de ocular, la siguiente tabla nos indica los tipos de oculares más comunes:

tipos de oculares

CapturaOculares Plöss de 25 y 6.5 mm, muy utilizados por su calidad y precio.

Adicionalmente a los oculares podemos interponerles una lente de Barlow, esta  nos permite multiplicar la focal de nuestro telescopio en función de la relación indicada por el fabricante (1.5x, 2x, etc). La más utilizada es la 2x (duplicador). Lo que conseguimos anteponiendo una lente de Barlow 2x a nuestros oculares es doblar su poder de aumento al duplicar la distancia focal, pero hay que tener cuidado pues suele provocar perdida de luminosidad con lo que es importante ir variando oculares hasta encontrar el que defina mejor la imagen. Funciona mejor con oculares de potencia media.

Captura                                                 Lente Barlow 2x

Hay que recordar que lo importante en un telescopio, más que los aumentos, es el tamaño de la abertura ya que colecta más luz y podemos observar objetos más débiles. Muchos aumentos provocan pérdida de luz y campos de visión más pequeños.

Para observar los objetos que estén muy cerca del cenit o en el cenit se puede colocar un prisma cenital para observarlos cómodamente. Este se coloca ante el ocular y desvía la luz 90º. El inconveniente que tiene es que resta luz y campo.

Captura Prisma cenital y ubicación en telescopio

Oculares a muy buen precio en Amazon: https://amzn.to/2JrZevC

Filtros. Para observar los objetos astronómicos podemos colocar filtros al ocular o al objetivo para resaltar determinados detalles.

Filtros de Ocular: Se colocan enroscados al ocular y se utilizan para filtrar la luz y resaltar determinadas características en los objetos astronómicos. Para planetas o la Luna se utilizan filtros de colores que resaltan la superficie y la atmósfera de los planetas. Cuando estamos en lugares con contaminación lumínica se pueden utilizar filtros para la polución lumínica LPR (ligth pollution o Sky Glow) que disminuyen el paso de longitudes de onda provenientes del alumbrado público (siempre que sean lámparas sodio o vapor de mercurio). Para nebulosas se utilizan filtros H-a que nos sirven para observar formaciones nebulosas que emiten en la banda del Hidrógeno.  Hay una gran diversidad de filtros en función de la longitud de onda que queramos resaltar o eliminar.

CapturaFiltros de colores para la observación planetaria y filtro antipolución lumínica

Filtros de Objetivo: Se colocan en el objetivo, son filtros usados para observación solar, también  existen filtros SUN para oculares pero pueden dañar a la larga el ocular o la vista.Captura Filtro de objetivo para la observación del Sol y telescopio con filtro Solar.

astronomy circle dark eclipse
Photo by Drew Rae on Pexels.com

cropped-logi1.jpg

Llega el verano al hermisferio norte y el invierno al hemisferio sur

El 21 de junio de 2018 a las 12:07 horario peninsular, tiene lugar el Solsticio de verano para el Hemisferio Norte de la Tierra, momento en el que se inicia el verano, este durará hasta la llegada del otoño el 23 de septiembre de 2018 después de 93 días y 15 horas de verano. 

El día 21 de junio es el día más largo del año (15 horas y 3 minutos) y la noche más corta, y otra curiosidad, en verano es cuando la Tierra está más alejada del Sol, lo que ocurre es que los rayos nos llegan más directos a este lado del Hemisferio Norte, sin embargo en el hemisferio sur empieza el invierno. En el Hemisferio Sur es llamado “Solsticio de Invierno” y es el día más corto del año, marcando el paso del Otoño al Invierno.

Captura

Inclinación de la Tierra en verano

Captura

Posición de la Tierra en cada estación

Hay una forma visual de saber que ya estamos en verano o muy cerca de la fecha del cambio de estación, es simplemente observando las constelaciones. Concretamente el llamado Triángulo de verano. Por estas fechas de finales o mitad de junio y sobre las 22h comienzan a verse sobre el horizonte Este y ascendiendo a las tres constelaciones del verano por excelencia: Cine, Lyra y Águila. Ambas forman el triángulo de verano, los vértices del cual lo forman las estrellas Vega en Lyra, Deneb en Cisne y Altair en Águila.

Triángulo de verano

Como fenómenos astronómicos interesantes tenemos un eclipse total de Luna el día 27 de julio, en el siguiente gráfico podemos ver donde se podrá observar:

nasa eclipse

También hay una lluvia muy interesante y conocida de estrellas fugaces, las famosas Perseidas de Agosto, este año el máximo de actividad meteórica de la lluvia cae muy bien (luna gibosa menguante) y en lugares alejados de la contaminación lumínica veremos un gran espectáculo, con casi 110 meteoros por hora en condiciones ideales (radiante en el cenit, todo despejado y buena calidad de cielo) el día 12 de agosto. Así que buscad un sitio oscuro poneos cómodos y a disfrutar de las estrellas 😉 y del verano.

Otras lluvias de estrellas fugaces:

lluvias estrellas fugaces 2018

Más información sobre el verano:

Observatorio astronómico nacional

Estrellas fugaces en 2018

cropped-logi1.jpg

El impresionante centro de nuestra galaxia en 360º

Un espectacular vídeo en 360º sumerge a los espectadores en una impresionante simulación del centro de nuestra galaxia, la Vía Láctea. La visualización fue realizada con datos del telescopio espacial Chandra y otros telescopios permitiendo a los espectadores la exploración de esta región desde diversos puntos de vista.

Créditos: Observatorio rayos x Chandra

Desde el punto de vista del agujero negro supermasivo de la Vía Láctea, Sgr A*, se pueden observar alrededor de 25 estrellas Wolf-Rayet (objetos blancos centelleantes) mientras expulsa continuamente vientos estelares (escala de color negro a rojo a amarillo). Estos vientos chocan entre sí, y luego parte de este material (manchas amarillas) gira en espiral hacia Sgr A*. El vídeo muestra dos simulaciones, cada una de las cuales comienza alrededor de 350 años en el pasado y abarca 500 años. La primera simulación muestra al agujero supermasivo en estado de calma, mientras que la segunda lo muestra más violento y expulsando material.

Para saber más:

La Vía Láctea

Agujeros negros

Estrellas Wolf-Rayet

cropped-logi.jpg

 

Una inmensa tormenta de polvo en Marte paraliza la comunicación con el robot Opportunity

Las operaciones científicas del robot Opportunity de la NASA han sido suspendidas temporalmente debido a una inmensa tormenta de polvo en Marte, se le ha dejado en estado de hibernación hasta que la enorme tormenta pase, cosa que puede durar semanas e incluso meses. la tormenta tiene dimensiones espectaculares, algo así como toda la superficie continental de la Tierra. En la siguiente imagen se puede ver como ha ido oscureciendo el día marciano:

arena marteLa imagen de la izquierda comienza con un cielo muy soleado a media tarde, con el sol apareciendo más grande debido al brillo. La derecha muestra al Sol oscureciéndose paulatinamente. créditos: NASA

 

El pase de diapositivas requiere JavaScript.

Estas dos imágenes del robot Curiosity, adquiridas específicamente para medir la cantidad de polvo dentro del cráter Gale, muestran que el polvo ha aumentado considerablemente en tres días a partir de esta gran tormenta de polvo marciana. En la primera imagen, vemos una vista del borde este-noreste del cráter Gale el 7 de junio de 2018 (Sol 2077) y en la siguiente una imagen del 10 de junio de 2018 (Sol 2074). Créditos de la imagen:  Mastcam-Curiosity.

Estas enormes tormentas de polvo, son lo que se denomina aerosoles, pero…

¿Qué es un aerosol?. Denominamos aerosol a una dispersión de partículas sólidas y líquidas en suspensión en un gas. Los aerosoles atmosféricos se refieren a partículas sólidas y líquidas suspendidas en el aire.

Pese a que Marte tiene una atmósfera muy débil en comparación con la Tierra y tan solo un 1% de la presión atmosférica que tenemos en nuestro planeta, se producen una gran cantidad de tormentas de arena, tanto a nivel local como a nivel global.

El viento está en parte influenciado por la circulación atmosférica general (y por lo tanto puede variar con la estación y el tiempo local). La configuración regional y posiblemente local también controla significativamente las características del viento, que sobre todo los efectos de la topografía, el albedo, y la inercia térmica.

Una tormenta de polvo local es un evento que se produce en Marte en una escala reducida, cuyo eje principal no es mayor que 2000 km y la superficie es menor que 106 km². Produce efectos locales como opacidades y variaciones de temperatura.

Captura

También pueden ocurrir tormentas de polvo globales que por lo general se origina a partir de una serie de tormentas regionales. Es probable que se produzcan en el rango de Ls 200º a Ls 310º (verano y otoño marciano) y puede durar muchos días marcianos.

CapturaEstaciones en Marte, puede verse que Ls:200 a Ls:300 corresponde a la posición de Marte en su órbita en las estaciones de verano y otoño.

Produce fuertes efectos globales sobre opacidades por el polvo, temperaturas y la circulación atmosférica (vientos ecuatoriales) y, por tanto, las tormentas de polvo tienen una gran influencia en perfiles atmosféricos de Marte.

cropped-logi.jpg

Descubiertas dos estrellas que orbitan entre sí en solo… 38 minutos!

Los astrofísicos que analizan los primeros datos de la misión (NICER), misión dedicada a mediciones de alta precisión de estrellas de neutrones: objetos que contienen materia ultradensa en el umbral del colapso en los agujeros negros, han encontrado dos estrellas que giran una alrededor de la otra cada 38 minutos. Una de las estrellas en el sistema, llamada IGR J17062-6143 es una estrella superdensa de giro rápido, lo que llamamos un púlsar (un púlsar es una estrella de neutrones que gira rápidamente). El descubrimiento otorga a este par estelar el período orbital más corto jamás conocido para este tipo de sistema binario.

Créditos vídeo: Goddard Space Flight Center de la NASA

 

Mientras giran, un púlsar superdenso extrae el gas de una enana blanca. Las dos estrellas están tan cerca que encajarían entre la Tierra y la Luna.

Captura

Con el tiempo, el material de la estrella donante se acumula en la superficie de la estrella de neutrones. Una vez que la presión de esta capa se acumula hasta el punto en que sus átomos se fusionan, se produce una reacción termonuclear impresionante, liberando la energía equivalente a 100 bombas nucleares de 15 megatones. Los rayos X de tales explosiones también pueden ser capturados por la misión NICER.

Para saber más:

Misión NICER

cropped-logi1.jpg