InSight ha LLEGADO con ÉXITO a Marte

La misión InSight es la primera dedicada a la investigación del interior del planeta Marte.

Se colocará el primer sismómetro en la superficie del planeta para medir los terremotos marcianos y utilizar las ondas sísmicas para aprender más sobre el interior del planeta rojo.

sdd

Recreación de la misión InSight. NASA

El robot profundizará bajo la superficie de Marte, detectando las huellas dactilares de los procesos de formación de los planetas rocosos, midiendo los signos vitales del planeta, como su “pulso” (sismología), “temperatura” (sonda de flujo de calor) y “reflejos” (seguimiento de precisión).

InSight también investigará la dinámica de la actividad tectónica marciana y los impactos de los meteoritos, que podrían ofrecer pistas sobre tales fenómenos en la Tierra. Estas y otras investigaciones de InSight mejorarán nuestra comprensión acerca de la formación y evolución de los planetas rocosos.

Primera imagen de la superficie de Marte. Créditos: NASA

Las operaciones de superficie se realizarán en la zona de Marte llamada Elysium Planitia . La misión principal del módulo de aterrizaje durará un año marciano (aproximadamente dos años terrestres).

Curiosidades:

Dentro de la misión van miles de nombres de personas de todo el mundo acompañando en el viaje a esta espectacular misión, entre ellos el nuestro… vamos a llegar a Marte 

pasaje-a-marte (1)

Para saber más:

Exploración de Marte

Descubierto hielo en Marte

El impresionante movimiento del exoplaneta Beta Pictoris b

El VLT (Very large Telescope) de ESO ha capturado el espectacular movimiento de un exoplaneta alrededor de su estrella anfitriona. En una serie de imágenes desde 2014 hasta 2018 han conseguido seguir y realizar un pequeño vídeo con su movimiento. Se trata de un enorme exoplaneta llamado Beta Pictoris b.

El VLT de ESO ha capturado las imágenes del exoplaneta Beta Picoris b alrededor de la estrella Beta Pictoris. Créditos: ESO

Beta Pictoris b orbita su estrella a una distancia parecida a la que existe entre el Sol y Saturno , aproximadamente 1.3 billones de kilómetros, lo que significa que es el exoplaneta más lejano a su estrella que se haya fotografiado directamente hasta el momento. La superficie de este planeta aún está muy caliente, alrededor de 1500 °C. Estas imagenes se han obtenido con el instrumento SPHERE de investigación de exoplanetas de alto contraste. Podemos ver el movimiento del exoplaneta en este pequeño vídeo:

Créditos: ESO/ Lagrange / SPHERE consortium

La mayoría de los exoplanetas se pueden descubrir por métodos indirectos, pero en el caso del instrumento SPHERE  de VLT puede observar grandes exoplanetas de forma directa, siendo un avance espectacular en la búsqueda de exoplanetas. 

Hablaremos un poco de los métodos más usados para buscar exoplanetas:

– Velocidad Radial, Astrometría, Tránsitos y Visión directa. 

Aunque también hay otros métodos más complicados como medidas de pulso de radio de un púlsar, observando variaciones en binarias eclipsantes o mediante microlentes gravitacionales, pero hablaremos de estos en otras entradas.

1) Velocidad radial: Este método se basa en el Efecto Doppler. El planeta, al orbitar su estrella, ejerce una fuerza gravitacional sobre ésta de manera que la estrella gira sobre el centro de masa común del sistema.

Las oscilaciones de la estrella pueden detectarse mediante pequeños cambios en las líneas espectrales según la estrella se acerca a nosotros (corrimiento hacia el azul) o se aleja (corrimiento al rojo). Es muy buen método para detectar planetas gigantes que estén muy cerca de la estrella.

Captura

La curva de velocidad radial resultante de la presencia de un planeta depende de su masa y de los elementos de su órbita.

2) Astrometría: Como la estrella gira sobre el centro de masa se puede intentar registrar las variaciones de su posición y el movimiento oscilatorio de la estrella. Son oscilaciones muy pequeñas, aun así con este método se encontró un Exoplaneta en 2009, llamado VB10b pues está alrededor de la estrella VB10, una enana roja a 20 años luz de nosotros. VB10b tiene un tamaño de 6 veces el planeta Júpiter.

Captura

Recreación del exoplaneta VB10b alrededor de su estrella

3) Tránsitos: Consiste en observar fotométricamente la estrella y detectar sutiles cambios en la intensidad de su luz cuando un planeta órbita por delante de ella. Esa pequeña variación en el brillo de la estrella fruto del tránsito del Exoplaneta nos puede determinar muchos parámetros, como profundidad de tránsito, tamaño del planeta, atmósfera, zona de habitabilidad.

Captura

Curva de brillo en función del tiempo de un tránsito

A partir de la curva de luz del tránsito se determina el cociente de radios planeta/estrella y la inclinación orbital, además de otros parámetros de la estrella y de la órbita.

En general, las observaciones de tránsito deben ser complementadas con medidas de velocidad radial para, de este modo, calcular la masa y determinar la naturaleza planetaria del objeto.

Otras aplicaciones de los tránsitos: Determinación de la atmósfera del planeta. Durante el transito y antes de la ocultación el planeta refleja la luz de la estrella y podemos determinar el espectro del planeta y por tanto la composición de su atmósfera. Método muy refinado y complicado pero con muy buenos resultados.

Captura

4) Visión directa: es un objetivo primordial actualmente pero tiene un problema, los objetos están muy lejos y quedan emborronados por el brillo de su estrella. La solución a este problema es la observación en un punto, es decir observa un píxel. Las variaciones en la reflexión de la luz sobre el planeta y las modulaciones en el brillo y la temperatura durante su periodo de rotación o de traslación medidas a distintas longitudes de onda pueden ser usadas para deducir las propiedades de su atmósfera y de su superficie.

Es necesario estudiar cómo se vería nuestro propio planeta desde la distancia, con toda su luz concentrada en un solo píxel. Con esta información y por comparación podemos determinar atmósferas y características de otros planetas. Podemos incluso determinar la posible presencia de vida, observando la presencia de biomarcadores.

Los biomarcadores nos abren la puerta a la detección remota de vida, que de otro modo sería inviable hasta un futuro a largo plazo.  La presencia de dióxido de carbono, un gas de efecto invernadero, ozono (que indica oxígeno en abundancia) y trazas de metano puede ser indicativo de un planeta con una temperatura superficial estable y suave con una biosfera. También puede ser importante la detección de óxidos de nitrógeno, que se encuentran a menudo asociados a actividad biológica de tipo bacteriano.

Como veis estos son los métodos más usados aunque hay alguno más mucho más complicado pero que ya sería complicar mucho más esta pequeña entrada. En la siguiente gráfica podéis ver algunos de los exoplanetas descubiertos y su método de descubrimiento:

Captura

Ya sabéis un poco más de la búsqueda de exoplanetas, como veis no estamos solos en el Universo, calculad que sí solo en nuestra galaxia hay 300.000 millones de estrellas y en cada estrella puede haber planetas, con que solo haya uno con posible vida (de cualquier tipo) tendríamos 300.000 millones de planetas con vida, y solo en nuestra galaxia… calculad lo que habría en el resto del Universo…. 

*Para saber más de exoplanetas:

Toda la información sobre Exoplanetas la tenéis en la siguiente página:

http://exoplanet.eu/

¿Por qué siempre vemos la misma cara de la Luna?

Nuestro satélite natural tiene un movimiento de rotación sobre su eje como lo hace la Tierra, por tanto la Luna no tiene un lado que está constantemente oscuro. A medida que la Luna gira, ambos lados se iluminan alternativamente por el Sol, al igual que la Tierra. La Luna gira sobre su eje, completando una rotación una vez cada 27.3 días. Se necesita el mismo período para orbitar la Tierra, por lo que mantiene el mismo lado frente a nosotros todo el tiempo. Pero no mantiene el mismo lado frente al sol. Ambas partes tienen noche y día.

Por tanto debido a esos dos movimientos siempre vemos la misma cara de la Luna, aunque también podemos ver en algunas ocasiones un poquito de la parte de atrás de la Luna, esto ocurre debido a pequeños movimientos oscilatorios de la Luna llamados libraciones.

cara oculta Luna
La cara oculta de la Luna

Como podéis ver en las imágenes hay una clara diferencia entre ambas caras, en la cara oculta no se observan las planicies oscuras enormes que tiene la cara visible, esto es debido a que durante la formación de la Luna esta se encontraba unas 10 a 20 veces más cerca de la Tierra de lo que está ahora, en ese momento quedó influenciada por fuerzas de marea quedando ligada a la Tierra, la parte visible estaba muy cerca de la Tierra que estaba muy caliente y tardó en enfriarse mucho más que la cara oculta. Por tanto la corteza lunar en la parte visible era mucho menos gruesa que la cara oculta, con lo que los impactos de meteoritos producían con mucha más facilidad salida de material volcánico, provocando la aparición de esas planicies. En la cara oculta mucho más gruesa ocurrieron también muchos impactos pero no produjeron tanta salida de material volcánico.

Las dos caras de la Luna, imagen de sonda LRO
Anuncios

La exploración más lejana de cualquier cuerpo planetario en la historia

La sonda New Horizons, famosa por su estudio e imágenes del planeta enano Plutón,  sigue viajando por el espacio interplanetario, de hecho llegará a final de año a un objeto del inexplorado Cinturón de Kuiper, una zona enorme con cuerpos helados y rocosos más allá de Neptuno, al objeto llamado Ultima Thule.

ultima thuleEl punto señalado con la cruz amarilla es Ultima Thule observado desde la sonda New Horizons, en ese momento estaba a 172 millones de kilómetros de la nave espacial y a 6.5 mil millones de kilómetros del Sol. Créditos de la imagen: NASA / JHUAPL / SwRI.

La visita a Ultima Thule será la primera exploración de un pequeño objeto del Cinturón de Kuiper y la exploración más lejana de cualquier cuerpo planetario en la historia, rompiendo el récord que New Horizons estableció con Plutón y Caronte en julio de 2015. Estas imágenes también son las más lejanas al Sol adquiridas de objetos del sistema solar, rompiendo el récord establecido por la famosa imagen «Pale Blue Dot Blue Dot» de la Voyager 1 tomada en el año 1990. 

La sonda New Horizons ha sido la primera nave espacial en estudiar y cartografiar Plutón y su acompañante Caronte. New Horizons incluye cámaras, espectrómetros, un detector de partículas de polvo y experimentos de ondas de radio.

Algunas impresionantes imágenes obtenidas por la sonda:

La imagen de color rojizo revela una cadena montañosa situada en el sureste de Cthulhu de 420 kilómetros de largo. Las laderas superiores de los picos más altos están recubiertas con un material brillante que contrasta fuertemente con el color rojo oscuro de las llanuras circundantes.

plutonnieveCréditos: NASA / JHUAPL / SwRI

Características de la montaña llamada Wright Mons, la imagensugiere indicar que se trata de un criovolcán. Esta es de aproximadamente unos 1600 km de ancho y unos 4000 m de alto, con una profunda depresión en la parte superior, así como estructuras onduladas en los lados de la montaña típicas de este tipo de volcanes.

plutoPlutón, Evidencia de posibles Volcanes congelados, imagen deNASA/SWRI/JHUAPL

Estaremos expectantes ante las imágenes espectaculares que podremos ver a final de año del objeto Ultima Thule.

cropped-logi2.jpg

Las magníficas nubes arremolinadas de Júpiter

La sonda Juno ha tomado una impresionante imagen de las nubes de la zona norte del planeta gigante gaseoso Júpiter, se puede ver un precioso mosaico de nubes arremolinadas en el dinámico Cinturón del hemisferio Norte de Júpiter. 

nubes júpiter NASA
Esta preciosa imagen se adquirió el 29 de octubre de 2018 cuando la nave realizó su 16° vuelo cercano a Júpiter. En ese momento, la sonda Juno estaba a 7.000 kilómetros de las nubes del planeta. Créditos: NASA-Misión Juno.

Otras imágenes espectaculares de Júpiter

En esta preciosa imagen se pueden observar las formaciones de nubes arremolinadas en el terminador de Júpiter, la región donde el día se encuentra con la noche.  La imagen fue adquirida por la sonda Juno durante su sobrevuelo undécimo el 7 de febrero de 2018 a una distancia de 120.533 kilómetros del planeta. Esta imagen es una de una serie de imágenes tomadas en un experimento para capturar los mejores resultados para las partes iluminadas de la región polar de Júpiter.

júpiter zona ecuatorialCréditos: NASA/JPL-Caltech/SwRI/MSSS/Gerald Eichstädt 

Es sorprendente ver al planeta Júpiter desde otro punto de vista, colocamos el planeta de lado con el norte a la izquierda y el sur a la derecha y vemos esta espectacular imagen del planeta más grande del sistema solar:

mancha roja júpiterEsta imagen procesada por un “ciudadano-científico“ fue adquirida el 10 de julio 2017 con datos del generador de imágenes JunoCam en la nave espacial Juno de la NASA. Créditos de las imágenes: NASA / JPL-Caltech / SwRI / MSSS / Gerald Eichstädt / Seán Doran

Las nuevas y alucinantes imágenes de la Gran Mancha Roja de Júpiter que la sonda Juno de NASA tomó el 10 de julio revelan un enredo de nubes oscuras y veteadas tejiendo su camino a través de un enorme óvalo carmesí, haciendo la gran mancha de Júpiter aun más bella de lo que para los amantes del cosmos ya es.

mancha roja 1Esta imagen en color mejorado de la Gran Mancha Roja de Júpiter fue creada por el científico Jason Major usando datos de la cámara JunoCam en la nave espacial Juno de la NASA. Créditos: NASA / JPL-Caltech / SwRI / MSSS / Jason Major.

La Gran Mancha Roja mide 16.350 kilómetros de ancho y  es 1.3 veces más ancha que la Tierra. La enorme tormenta ha sido observada desde 1830 y posiblemente haya existido desde hace más de 350 años.

Esta impresionante imagen muestra el polo sur del planeta gigante gaseoso, visto por la nave espacial Juno de la NASA desde una altitud de 52.000 kilómetros. Las características ovales son ciclones de aproximadamente 1.000 kilómetros de diámetro. Múltiples imágenes tomadas con el instrumento JunoCam en tres órbitas diferentes se han combinado para mostrar todas las áreas a la luz del día, obteniendo un color mejorado y realizando una proyección estereográfica.

polo sur de jupiterCréditos: NASA / JPL-Caltech / SwRI / MSSS / Salón Betsy Asher / Gervasio Robles

La siguiente imagen se ha adquirido a 4.400 kilómetros por encima de las nubes superiores del planeta Júpiter, viajando a una velocidad de alrededor de 57,8 kilómetros por segundo con respecto al planeta gigante gaseoso.

jupiterEn esta imagen en color se pueden observar algunos de los enormes remolinos de la atmósfera del planeta que no son más que espectaculares tormentas. Créditos: NASA / JPL-Caltech / SwRI / MSSS / Roman Tkachenko

Juno nos ayudará a entender por qué Júpiter fue de los primeros planetas en formarse. También sí se podría haber formado más lejos del sol antes de migrar hacia el interior del sistema solar y quedarse en su órbita actual. Debido a que Júpiter se formó al mismo tiempo que el sol, sus composiciones químicas deben ser similares. Pero Júpiter tiene elementos más pesados , como el carbono y el nitrógeno , que el Sol.

La determinación de la cantidad de agua, y por lo tanto de oxígeno, en el gigante de gaseoso es importante no sólo para la comprensión de cómo se formó el planeta, sino también cómo los elementos pesados se transfieren a través del sistema solar. Estos elementos pesados fueron determinantes para la existencia de planetas rocosos como la Tierra y la vida. Juno nos desvelará todos esos misterios.

cropped-logi2.jpg