¿Hay otras civilizaciones avanzadas en el Universo?

Esta pregunta que todos nos hemos hecho en algún momento la resuelve la llamada, Paradoja de Fermi y la ecuación de Drake, os explico qué es cada una de ellas y lo que plantean.

La paradoja de Fermi se puede resumir en la siguiente frase: La creencia común de que el Universo posee numerosas civilizaciones avanzadas tecnológicamente, combinada con nuestras observaciones que sugieren todo lo contrario es paradójica sugiriendo que nuestro conocimiento o nuestras observaciones son defectuosas o incompletas.

El gran silencio de esas civilizaciones y el que de momento no seamos capaces de encontrar una señal es un problema molesto y muy discutible, ¿estamos preparados para poder escucharlos? ¿lo estamos haciendo bien? ¿somos los únicos? ¿somos los primeros?, ¿nos están observando y no nos enteramos?, ¿qué tiempo dura una civilización tecnológica? Este maravilloso vídeo animado explica el problema de la Paradoja de Fermi y por qué nuestro aparente aislamiento en la galaxia es tan raro.

La famosa ecuación de Drake se utiliza para estimar el número de civilizaciones tecnológicas que podrían existir en la galaxia. La ideó el Dr Frank Drake cuando  trabajaba como radioastrónomo en el Observatorio Nacional de Radioastronomía en Green Bank, West Virginia, para hacer una estimación de las posibles civilizaciones tecnológicas a lo largo de toda nuestra galaxia, incluyendo una serie de factores que creía importantes para que una civilización sobreviva..
Esta identifica factores específicos que se cree que juegan un papel muy importante en el desarrollo de las grandes civilizaciones tecnológicas. Factores que pasamos a explicar a continuación.

Todo esto unido da la siguiente formula:

Donde cada factor significa lo siguiente:

N = El número de civilizaciones en la Vía Láctea cuyas emisiones electromagnéticas son detectables.

* = Tasa de formación de estrellas adecuada para el desarrollo de la vida inteligente.

p = Fracción de esas estrellas con sistemas planetarios.

e = Número de planetas, por sistema estelar, con un entorno adecuado para la vida.

l = Fracción de planetas adecuados en los que aparece la vida.

i = Fracción de planetas portadores de vida en la que emerge la vida inteligente.

c = Fracción de civilizaciones que desarrollan una tecnología que libera signos detectables de su existencia en el espacio.

L = Cantidad de tiempo que tales civilizaciones liberan señales detectables en el espacio.

Créditos imagen: Fundación Chile hace Ciencia

En el siguiente vídeo extraído de la mítica serie COSMOS nos lo explica de manera genial el grandísismo Carl sagan, en este introduce algunos factores para dar varios resultados muy interesantes, os recomiendo que veáis con mucho atención el vídeo:

Sí multiplicamos todos esos factores nos dan un número N de posibles civilizaciones tecnológicas que fueron capaces de construir radiotelescopios y que durante su vida no se autodestruyeron. La Ecuación de Drake está siempre cuestionada ya que según variemos un factor u otro daría un resultado, también se dice de ella que está incompleta y le faltaría algún termino más.

Lo cierto es que por lo menos hizo pensar o tratar de cuantificar nuestra soledad en la galaxia, a muchos investigadores le dan diversos resultados, pero nunca dan cero resultados. Por tanto podemos estimar que no estamos solos en el Universo, tal vez están muy lejos y todavía no han desarrollado tecnología para comunicarse, tal vez tuvieron una vida muy corta en la escala de los tiempos, o a lo mejor están desarrollándose ahora…, pero seguro que hay otros preciosos mundos, muy lejanos en el cosmos, que se estarán preguntando… ¿Habrá alguien allí?

Photo by James Lee on Pexels.com

La sonda DART de la NASA ha chocado contra un asteroide en la primera prueba de defensa planetaria

La misión DART de la NASA ha chocado contra un asteroide para intentar variar su órbita.

La ha lanzado contra una pequeña luna de un asteroide doble llamado Didymos , la sonda del tamaño un coche pequeño, llamada DART (Doble Asteroid Redirection Test), ha chocado deliberadamente contra la luna del asteroide llamada Dimorphos. Esto es solo una prueba, ya que ni el asteroide Didymos ni su luna representan una amenaza para nuestro planeta, pero presentan un buen campo de pruebas.

Ilustración de la nave espacial DART de la NASA y el LICIACube de la Agencia Espacial Italiana (ASI) antes del impacto en el sistema binario Didymos. Los asteroides binarios Didymos son dos objetos, uno de 780 m y otro que orbita al objeto más grande y que mide 160 m, y que se encuentran a 11 millones de km de la Tierra. Créditos: NASA / Johns Hopkins APL / Steve Gribben

Los observatorios terrestres de todo el mundo han visto la colisión, a una distancia mínima de 11 millones de kilómetros.

Esta es una misión internacional de evaluación de impacto y desviación de asteroides  llamada AIDA, como hemos visto tiene como objetivo probar si es posible cambiar la órbita de un asteroide al impactarlo a gran velocidad. Tener esta técnica lista para ser empleada en caso de ser necesario, puede ser crucial para garantizar la seguridad de nuestro planeta. Pero también quiere estudiar otras cosas en el asteroide, para eso también interviene la Agencia Europea del Espacio (ESA).
Por tanto AIDA es una misión de doble nave espacial compuesta por la nave espacial DART de la NASA que ya ha chocado, y la nave espacial Hera de la ESA que llevará a cabo una encuesta detallada posterior al impacto, y estudiará propiedades exteriores e interiores de ambos cuerpos en el sistema doble.

Simulación del choque

Hera también medirá el cráter dejado por DART a una resolución enorme de 10 cm, para dar una idea de las características de la superficie y la composición interna del asteroide.

Anuncios

Asteroides peligrosos más para la Tierra, los NEAs

Los NEAs (Near Earth Objects-objetos cercanos a la Tierra), son asteroides eyectados del cinturón principal de asteroides, o cometas extintos provenientes del cinturón de Kuiper  que se encuentran en órbitas muy cercanas a la Tierra y algunos de ellos incluso llegan a cruzan su órbita, con el consiguiente peligro de impacto. Suelen ser órbitas excéntricas y con perihelios cerca de 1,3 UA. Los NEAs de tipo asteroidal provienen del Cinturón principal ya que debido a resonancias con Júpiter varían su órbita y se trasladan a órbitas menores de 1,3UA.

El cinturón principal de asteroides tiene unos huecos, los llamados huecos de Kirkwood que son las zonas donde se producen estas resonancias,  cuando un asteroide entra en esos huecos es lanzado por Júpiter hacia el interior del Sistema Solar o fuera de él, ya que va variando la órbita del asteroide. Una vez convertidos en objetos cercanos a la Tierra sobreviven en su órbita unos pocos millones de años hasta que son eliminados por degradación orbital  colisionando con el Sol o con los planetas interiores.

Podemos agruparlos en tres grupos:

Tipo meteoroide, que son de tamaño menor a 50 m.

Tipo asteroide, que pueden ser tamaños entre 50 m y decenas de Kilómetros.

Tipo cometa, que son cometas extintos que ya no tienen elementos volátiles y que han quedado atrapados en órbitas cercanas al Sol.

Nos centraremos en los NEAs tipo asteroide. Estos se clasifican en tres grupos: Amor, Apolo y Atenas (llamados grupo AAA), desde los más alejados a la tierra como es el caso del tipo Amor, hasta los más cercanos y peligrosos que son los de tipo Atenas (o Atón). En la figura podemos ver las órbitas de estos asteroides:

Órbitas de los NEAs. Créditos: UNIVERSO Blog

 La misión de impacto en este asteroide binario nos ayudará a luchar contra un posible impacto contra la Tierra, que de producirse podría ser devastador para la vida en el planeta, con lo que tenemos que empezar a tomarnos muy enserio la amenaza de los asteroides.

Para saber más:

Vídeo de la misión: https://www.esa.int/spaceinvideos/content/view/embedjw/503101

Anuncios

Los anillos de Neptuno como jamás se han visto

El telescopio espacial James Webb sigue enviando imágenes increíbles y espectaculares, una de ellas es sobre Neptuno, el último planeta del sistema solar.

Neptuno tiene unos anillos muy tenues pero con el telescopio espacial James Webb se ven de una forma majestuosa.

Neptuno y sus anillos, créditos: NASA, ESA, CSA, STScI

Este planeta se caracteriza por ser un gigante de hielo debido a la composición química de su interior. En comparación con los gigantes gaseosos, Júpiter y Saturno, Neptuno es mucho más rico en elementos más pesados ​​que el hidrógeno y el helio. Esto es fácilmente evidente en la característica apariencia azul de Neptuno en las en longitudes de onda visibles, causada por pequeñas cantidades de metano gaseoso.

La cámara de infrarrojo cercano de Webb, denominada NIRCam, adquiere imágenes de los objetos astronómicos en el rango de infrarrojo cercano, por lo que Neptuno no aparece con su característico color azul. De hecho, el gas metano absorbe con tanta fuerza la luz roja e infrarroja que el planeta es bastante oscuro en estas longitudes de onda del infrarrojo cercano, excepto donde hay nubes a gran altura. Estas nubes de hielo de metano se destacan como rayas y puntos brillantes, que reflejan la luz solar antes de que sea absorbida por el gas metano.

Los anillos restos de hielo y polvo se pueden ver también muy bien desde el telescopio, destacando de una forma espectacular.

Anuncios

Para saber más:

https://www.nasa.gov/feature/goddard/2022/new-webb-image-captures-clearest-view-of-neptune-s-rings-in-decades

¿Sabíais que la Tierra tiene otra «luna»?

Sí, así es a parte de nuestra Luna, tenemos otra que se llama Cruithne, se trata de un asteroide de unos 5 km de diámetro, que sigue una órbita parecida a la de la Tierra. 

También conocido como asteroide 3753, Cruithne es un objeto cercano a la Tierra o NEA, se puede decir que nos está siguiendo eternamente pero sin riesgo de impacto.

Sigue unas trayectorias en la órbita de la Tierra en forma de riñón o alubia, y en su punto más cercano a nosotros está a 12,5 millones de kilómetros.

Cruithne, fue descubierto en 1986, orbitando alrededor del Sol en una órbita elíptica, y ha sido bautizado como «La segunda luna de la Tierra«, aunque se le suele llamar cuasisatélite.

Estos objetos orbitan alrededor del Sol desde la misma distancia que el planeta. Sus órbitas son muy inestables, y con el tiempo pueden acabar en otras posiciones  o ser expulsados de sus órbitas.

Anuncios

La esfericidad de la Tierra: La Tierra no es plana (en este siglo hay personas que tristemente aun lo piensan…)

El Sol lo vemos en diferentes posiciones a lo largo del día porque la Tierra gira sobre su eje y debido a esto vamos viendo pasar el Sol a lo largo del día. Lo vemos a diferentes alturas a lo largo del año porque la Tierra lo ve en diferentes posiciones conforme vamos trasladándonos alrededor del Sol en nuestra órbita (que le cuesta un año trasladarse alrededor del Sol).

La Tierra no es plana y no es el centro del Universo. Pero antiguas civilizaciones pensaban que la Tierra era plana (incluso en este siglo hay personas que equivocadamente y tristemente aun lo piensan…), los antiguos tenían muchas preguntas que en esas épocas eran complicadas de contestar, habían muchos inconvenientes:

¿Extensión infinita? No tiene fin, hay un mar enorme y después más y más agua y agua….¿extensión finita? el fin de la Tierra en el mar luego hay terribles monstruos y precipicios enormes…¿Cómo se sostiene? ¿sostenerse en el aire algo tan grande?¿Y las estrellas siempre son las mismas?. Todas estas preguntas se las hacían en la antigüedad. La teoría que lo arreglaba casi todo era la siguiente: Los hindúes la imaginan apoyada sobre cuatro pilares que a su vez estaban sobre cuatro elefantes y éstos sobre una tortuga gigante que nadaba en un océano enorme. Sorprendente pero para ellos muy real.

Captura

No fue hasta los griegos hasta que realmente se fue consciente de que la Tierra era esférica. Aunque antes se llegó a pensar que era cilíndrica,  la sencilla explicación de suponer que la Tierra se curva en la dirección Norte-Sur es lo que llevó al filósofo Anaximandro de Mileto a sugerir -erróneamente-que la Tierra tenía forma cilíndrica. Pero la solución de que la Tierra era esférica la dieron los navegantes. Cuando se alejaban los barcos iban desapareciendo en el horizonte y lo último que se veía eran las velas, por tanto estaban «bajando» por la curvatura de la Tierra. Desde la orilla se veía menos parte del barco y desde una montaña muy alta se veía aun más parte.

Captura

Por otro lado, los astrónomos griegos también pensaron que la mejor forma de explicar los eclipses de Luna era suponer que la Tierra se situaba entre ésta y el Sol y que su sombra proyectada por este astro, caía sobre la Luna y la eclipsaba. Como la proyección de esta sombra siempre era circular, confirmaba, una vez más, el carácter esférico de la Tierra.

La primera prueba directa de la esfericidad de la Tierra tardaría en llegar casi diecinueve siglos. En 1522 Magallanes y Juan Sebastian el Cano realizan la circunnavegación de la Tierra, ¡la Tierra es redonda!

Y la prueba definitiva: Imagen desde el Apolo 11 en 1969:

Captura

Este planeta que ya hemos demostrado que es redondo se traslada alrededor del Sol y se sabe desde la época del renacimiento cuando un modelo matemático diseñaba un sistema heliocéntrico que representaba completamente la realidad de lo observado en el cielo, este fue presentado por el matemático y astrónomo  Nicolás Copérnico, con la publicación en 1543 del libro De Revolutionibus Orbium Coelestium. Esto marcó el inicio de lo que se conoce como «revolución copernicana» y la teoría heliocéntrica, en la que en el centro del sistema solar está el Sol y los demás planetas están trasladándose alrededor del astro rey, por fin deja de ser la Tierra el centro del Universo, para ser simplemente un planeta más alrededor de una estrella de lo más común en una enorme galaxia de las miles de millones de galaxias que tenemos en el Cosmos, somos una mota de polvo en el océano cósmico. En el siglo siguiente, Johannes Kepler extendió este modelo para incluir órbitas elípticas y por fin se demostró perfectamente lo que no saben algunas personas en el siglo XXI, que la Tierra gira alrededor del Sol.

Captura

Posición de la Tierra en su órbita alrededor del Sol y diferentes estaciones según la posición

Bueno espero que este resumen muy resumido sobre la esfericidad y traslación de la Tierra alrededor del Sol deje esto un poco más claro :-).

Photo by Pixabay on Pexels.com