Archivo de la etiqueta: 2022

Los diferentes colores de las estrellas. ¿Por qué tienen esos colores?

Las estrellas muestran multitud de colores, incluidos rojo, naranja, amarillo, blanco y azul entre otros muchos. Las estrellas no son todas del mismo color porque no todas tienen temperaturas idénticas ya el color que veamos depende de su temperatura. Para definir el color con precisión, los astrónomos han ideado métodos cuantitativos para caracterizar el color de una estrella y luego usar esos colores para determinar las temperaturas estelares. 

Color y Temperatura

La llamada ley de Wien relaciona el color estelar con la temperatura estelar . Los colores azules dominan la salida de luz visible de las estrellas muy calientes (con mucha radiación adicional en el ultravioleta). Por otro lado, las estrellas frías emiten la mayor parte de su energía de luz visible en longitudes de onda rojas (con más radiación proveniente del infrarrojo). Por lo tanto, el color de una estrella proporciona una medida de su temperatura superficial intrínseca o verdadera (aparte de los efectos del enrojecimiento por el polvo interestelar). El color no depende de la distancia al objeto. El color de un semáforo, por ejemplo, parece el mismo por muy lejos que esté. Si de alguna manera pudiéramos tomar una estrella, observarla y luego moverla mucho más lejos, su brillo aparente (magnitud) cambiaría. Pero este cambio de brillo es el mismo para todas las longitudes de onda, por lo que su color seguiría siendo el mismo.

Ejemplos de colores de estrellas y temperaturas aproximadas correspondientes
Color de la estrellaTemperatura aproximadaEjemplo
Azul25.000ºCSpica
Blanco10.000ºCVega
Amarillo6000 ºCSol
Naranja4000ºCAldebarán
Rojo3000ºCBetelgeuse

Os recomendamos esta simulación interactiva para ver cómo cambia el color:

https://phet.colorado.edu/sims/html/blackbody-spectrum/latest/blackbody-spectrum_en.html

Las estrellas más calientes tienen temperaturas de más de 40 000ºC, y las estrellas más frías tienen temperaturas de alrededor de 2000 ºC. La temperatura de la superficie de nuestro Sol es de alrededor de 6000 ºC; su color de longitud de onda máxima es ligeramente amarillo verdoso. En el espacio, el Sol se vería blanco, brillando con aproximadamente la misma cantidad de longitudes de onda de luz rojizas y azuladas. Se ve algo amarillo visto desde la superficie de la Tierra porque las moléculas de nitrógeno de nuestro planeta dispersan algunas de las longitudes de onda más cortas (es decir, azules) de los rayos de luz solar que nos llegan, dejando atrás más luz de longitud de onda larga. Esto también explica por qué el cielo es azul: el cielo azul es la luz del sol dispersada por la atmósfera de la Tierra.

Índices de color

Para especificar el color exacto de una estrella, los astrónomos normalmente miden el brillo aparente de una estrella (discutido en Luminosidad y brillo aparente ) a través de filtros, cada uno de los cuales transmite solo la luz de una banda estrecha particular de longitudes de onda (colores). Un ejemplo crudo de un filtro en la vida cotidiana es una botella de refresco de plástico de color verde que, cuando se sostiene frente a los ojos, solo deja pasar los colores verdes de la luz.

Un conjunto de filtros de uso común en astronomía mide el brillo estelar en tres longitudes de onda correspondientes a la luz ultravioleta, azul y amarilla. Los filtros se nombran: U (ultravioleta), B (azul) y V (visual, para amarillo). Estos filtros transmiten luz cerca de las longitudes de onda de 360 ​​nanómetros (nm), 420 nm y 540 nm, respectivamente. El brillo medido a través de cada filtro se suele expresar en magnitudes. La diferencia entre cualquiera de estas dos magnitudes, por ejemplo, entre las magnitudes azul y visual (B–V), se denomina índice de color.

Para saber más:

El verdadero color del Sol

El color de las estrellas fugaces

Radiación electromagnética

Anuncios

¿POR QUÉ NO PODEMOS VIAJAR A LA VELOCIDAD DE LA LUZ?

La velocidad de la luz en el vacío es un límite de velocidad cósmico absoluto. Nada puede ir más rápido que los casi 300.000 km/s que es la velocidad de la luz.

 De acuerdo con las leyes de la física, a medida que nos acercamos a la velocidad de la luz, tenemos que proporcionar más y más energía para que un objeto se mueva. Para alcanzar la velocidad de la luz, necesitarías una cantidad infinita de energía, cosa que es imposible.

Es posible que hayais escuchado alguna vez que un objeto que viaja a la velocidad de la luz gana una masa infinita, pero eso no es exactamente cierto. El objeto en realidad no gana masa física, pero se comporta como si lo hubiera hecho. Por ejemplo, si una persona de 65 kg viajara al 50 % de la velocidad de la luz, se comportaría como si tuviera una masa de 87 kg. Al 90%, se comportaría como si pesara 172 kg.

Entonces, si la masa no puede viajar a la velocidad de la luz, ¿cómo puede hacerlo la luz? La luz está formada por fotones, que son  partículas sin masa  y, por lo tanto, no requieren energía para moverse, la naturaleza es muy sabia…

Explicación genial del gran Carl Sagan de la velocidad de la luz:

Otras cosas curiosas que ocurren al viajar a la velocidad de la luz es la llamada dilatación del tiempo. El tiempo se ralentiza a medida que te acercas a la velocidad de la luz y cuando la alcanzas, el tiempo se detiene. Para un fotón no existe el tiempo, todo sucede instantáneamente. 

La dilatación del tiempo nos afecta todo el tiempo en la vida cotidiana, pero sus efectos son tan pequeños que no podemos verlos. Según la teoría de la relatividad, “los relojes en movimiento van lentos”. Lo que significa que si arrojas tu reloj por un precipicio, la hora que muestra estará ligeramente atrasada con respecto a un reloj que no haya sido arrojado por un precipicio. Este es el caso de todos los relojes, mecánicos y biológicos. En realidad, envejeces más lentamente a velocidades tan altas, pero tendrías que viajar bastante rápido para notar una gran diferencia. Por ejemplo, alguien que ha estado en la estación espacial internacional durante 6 meses habrá envejecido 0,005 segundos menos que alguien aquí en la tierra. La ISS viaja alrededor de la tierra una vez cada 90 minutos, pero aún así es solo el 0,003% de la velocidad de la luz. 

Imaginemos que viajamos en una nave espacial al 98% de la velocidad de la luz durante unos minutos… ¿Qué veríamos?

Si pudiéramos ver lo que está pasando, una persona que viaja hacia nosotros a la velocidad de la luz parecería azul, ya que las ondas de luz que rebotan en ellos y en su ojo se habrán aplastado y compactado, acortando la longitud de onda. A esto lo llamamos corrimiento al azul. De manera similar, si la persona estuviera viajando alejándose de nosotros las ondas de luz se estirarían, lo que haría que la longitud de onda fuera más larga y aparecerían rojas, y a eso lo llamamos corrimiento hacia el rojo. Para la persona que viaja a la velocidad de la luz, todo lo que se encuentre frente a ella se aplastará en lo que parece un túnel borroso, el anillo exterior del túnel aparecerá rojo y el interior azul…

Sí alguna vez viajáis a esa velocidad será alucinante!!!

Anuncios

¿Cómo funcionan las estrellas?

Para ello nos centraremos en una muy conocida, el Sol. Como todas las demás estrellas del universo observable, el Sol es una enorme y brillante esfera de gas caliente y resplandeciente que se mantiene unida por su propia gravedad. Vive en la Vía Láctea, junto con aproximadamente 400 mil millones de otras estrellas. Todas funcionan según el mismo principio básico: fusionan átomos en sus núcleos para generar calor y luz. Así es como funciona una estrella.

Photo by Pixabay on Pexels.com

Para el Sol, esto significa que los átomos de hidrógeno se juntan bajo altas temperaturas y presiones. El resultado es un átomo de helio. Ese proceso de fusión libera calor y luz, a esre proceso se le denomina «nucleosíntesis estelar» y es la fuente de muchos de los elementos del universo más pesados ​​que el hidrógeno y el helio. 

Entonces, de estrellas como el Sol, el futuro universo obtendrá elementos como el carbono, que producirá a medida que envejezca. Los elementos muy «pesados», como el oro o el hierro, se forman en estrellas más masivas cuando mueren y producen supernovas, o incluso en las colisiones catastróficas de estrellas de neutrones.

¿Cómo hace una estrella para hacer esta «nucleosíntesis estelar» y no explotar en el proceso? La respuesta: equilibrio hidrostático. Eso significa que la gravedad de la masa de la estrella (que atrae los gases hacia adentro) se equilibra con la presión hacia afuera del calor y la luz, la  presión de radiación , creada por la fusión nuclear que tiene lugar en el núcleo.

Es decir el equilibrio entre la gravedad y la presión mantiene a la estrella cohesionada:

equi estrellas

Esta fusión es un proceso natural y requiere una enorme cantidad de energía para iniciar suficientes reacciones de fusión para equilibrar la fuerza de la gravedad en una estrella. El núcleo de una estrella necesita alcanzar temperaturas superiores a los 10 millones de grados centígrados para comenzar a fusionar hidrógeno, en ese momento se enciende una estrella. Nuestro Sol, por ejemplo, tiene una temperatura central de alrededor de 15 millones de grados.

Una estrella que consume hidrógeno para formar helio se denomina estrella de «secuencia principal» durante todo el tiempo que es un objeto que fusiona hidrógeno. Cuando agota todo su combustible, el núcleo se contrae porque la presión de radiación hacia el exterior ya no es suficiente para equilibrar la fuerza gravitatoria. La temperatura central aumenta (porque se comprime) y eso le da suficiente «empuje» para comenzar a fusionar átomos de helio, que comienzan a convertirse en carbono. En ese momento, la estrella se convierte en una gigante roja. Más tarde, cuando se queda sin combustible y energía, la estrella se contrae y se convierte en una enana blanca. Este sería el caso para nuestra estrella, el Sol, pero las estrellas de gran masa, sin embargo, son diferentes al Sol en muchos aspectos. Viven vidas cortas y explotan como supernovas, lanzando de forma dramática sus elementos al espacio. El mejor ejemplo de una supernova es la Nebulosa del Cangrejo, en Tauro. 

m1
Nebulosa del Cangrejo (M1), está situada 6.300 años luz de la Tierra y tiene un diámetro de 6 años luz. Credit: NASAESA, J. Hester, A. Loll (ASU); Acknowledgement: Davide De Martin (Skyfactory)

El núcleo de la estrella original queda atrás mientras el resto de su material es lanzado al espacio. Eventualmente, el núcleo podría comprimirse para convertirse en una estrella de neutrones o un agujero negro.

Anuncios

¿Qué galaxias son observables a simple vista?

Observar el cielo nocturno es una experiencia increíble, miles de estrellas nos rodean pero también hay objetos espectaculares que se pueden ver a simple vista, como por ejemplo algunas galaxias. Primero hay que decir que para poder observarlas hay que irse a lugares alejados de la contaminación lumínica y las veremos como una simple y pequeña mancha borrosa, pero podemos decir que estamos viendo una galaxia en directo.

La primera que podemos ver, y es algo que todos tendríamos que saber, es nuestra propia galaxia, la Vía Láctea, podemos ver el plano galáctico que es lo que se ve desde nuestra posición en la galaxia. Podemos ver la zona más densa de la galaxia como una tenue nebulosidad que cruza el cielo, siempre que la veamos desde lugares muy oscuros y alejados de la contaminación lumínica.

Imagen de la Vía Láctea. Imagen de Sam Kolder on Pexels.com

Hasta principios del siglo XX, se pensaba que nuestra Galaxia era el Universo. Estudios de luminosidad realizados por el astrofísico Edwin Hubble demostraron que existen estructuras muy lejanas, exteriores a la vía láctea, la llamada en la época “nebulosa de Andrómeda” no era más que otra galaxia a 2.4  millones de años luz. Por tanto descubrimos que nuestra galaxia era una más de las otras miles de millones de nuestro Universo.

Nuestro Sol se halla en el borde interno de un brazo espiral de la Vía Láctea llamado “brazo de Orión”. El Sol, que arrastra con su gravedad al Sistema Solar, órbita entorno al centro galáctico con un periodo de 240 millones de años, a una velocidad de 220 km/s. Por tanto estamos realizando un viaje interestelar tremendo, y no nos damos cuenta…, es todo un verdadero turismo espacial desde nuestra nave la Tierra.

Pero vamos a ver la otras galaxias que podemos ver sin necesidad de telescopios y en condiciones despejadas y sin Luna. 

  • Gran Nube de Magallanes (Magnitud 0.9)
En la imagen podemos ver la Vía Láctea, la Gran nube de Magallanes y la pequeña nube de Magallanes. Photo by Nick Kwan on Pexels.com

La Gran Nube de Magallanes, o LMC, se encuentra muy cerca de nuestra galaxia a tan solo 163.000 años luz y la pequeña Nube de Magallanes a unos 230.000 años luz. Estas pequeñas galaxias son también el hogar de varios conglomerados estelares espectaculares y es un laboratorio ideal para que los astrónomos estudien los procesos que dan forma a las galaxias, ya que están muy cerca y son de muy fácil estudio.

  • Pequeña Nube de Magallanes (Magnitud 2.7)
Pequeña Nube de MagallanesCréditos: A. Nota (ESA/STScI) et al., ESANASA
  • Galaxia de Andrómeda (Magnitud 3.4)

Esta galaxia denominada M31 se encuentra a 2,5 millones de años luz en dirección a la constelación de Andrómeda.

Ubicación de la Galaxia de Andrómeda (M31), (pulsar sobre la imagen para ver mejor los detalles)

Esta preciosa galaxia se está acercando a nosotros a unos 300 km/s, y en aproximadamente 6.000 millones de años podría colisionar con nuestra galaxia y formar una galaxia elíptica enorme. En realidad, las galaxias no chocan, realizan una especie de danza cósmica y se mezclan hasta formar otra nueva galaxia.

  • Galaxia Triángulo (Magnitud 5.7)

Esta galaxia es el tercer miembro más extenso de nuestro grupo local de galaxias. Se encuentra a 3.6 millones de años luz de nosotros, se presenta casi de frente y cubre un área del firmamento mayor que la Luna llena, a pesar de su tamaño no se puede observar bien a simple vista debido a su bajo brillo. Su nombre técnico es M33.

M33, galaxia del Triángulo. Créditos: Telescopio espacial Hubble

Esta galaxia la podemos encontrar en la bonita constelación del Triángulo.  La constelación la podemos encontrar entre las constelaciones de Aries y de Andrómeda, la conforman tres estrellas que dan forma a un triangulo isósceles.

Constelación_triángulo

La Constelación del Triángulo. Pulsar sobre la imagen para apreciar los detalles.
  • Centauro A (Magnitud 6,84)

La galaxia también conocida como NGC 5128, se encuentra a 11 millones de años luz de nosotros, en la constelación de Centauro, siendo la radiogalaxia más cercana a la Tierra. Se formó por una colisión de dos galaxias, creando una fantástica mezcla de cúmulos de estrellas jóvenes azules, regiones rosáceas y enormes bandas de polvo oscuro.

centaurusA
Créditos. ESO/WFI (Optical); MPIfR/ESO/APEX/A.Weiss et al. (Submillimetre); NASA/CXC/CfA/R.Kraft et al. (X-ray)

La imagen anterior se consiguió con combinación de datos de imágenes de telescopios espaciales y terrestres. Cerca del centro de la galaxia hay un enorme agujero negro de 55 millones de veces la masa del Sol, que expulsa un chorro relativista que podemos ver en la siguiente imagen, (las radiogalaxias en imágenes de óptico son muy normales pero en imágenes de radio son espectaculares).

Anuncios

Envía tu nombre alrededor de la Luna con la misión Artemisa I

Agrega tu nombre a la próxima misión de la NASA preparatoria para la vuelta del ser humano a la Luna, la misión se llama Artemisa I, vuestro nombre irá en unidad flash que volará a bordo de la nave espacial Orión de la NASA mientras orbita la Luna, además, obtendrás una tarjeta de embarque que puedes descargar, imprimir y compartir en tus redes sociales, estarás más cerca de la Luna que nunca!
Lo puedes hacer desde el siguiente enlace:
Agrega aquí tu nombre a Artemisa I
Créditos: NASA
Artemisa I es la primera prueba de vuelo sin tripulación del cohete del Sistema de Lanzamiento Espacial y la nave espacial Orión, que se lanzará desde el histórico Complejo de Lanzamiento 39B en el Centro Espacial Kennedy de la NASA en Florida. Artemis I allanará el camino hacia el alunizaje de la primera mujer y la primera persona de color en la Luna en futuras misiones, y servirá como un paso importante para tener una presencia humana a largo plazo en la Luna.

Nosotros ya tenemos nuestra tarjeta de embarque, mirad que chula ha quedado:

La misión Artemisa (diosa griega asociada a la Luna) es muy ambiciosa, así como cara, casi 8000 millones de dolares al año de aumento de presupuesto para la NASA, pero el objetivo es espectacular, la vuelta del ser humano a la Luna y tal vez la primera mujer astronauta en pisarla, una base permanente en nuestro satélite para desde allí alcanzar en un futuro Marte y estudiar aun mejor nuestro satélite natural.

Anuncios
Photo by Soumen Maity on Pexels.com

La última misión humana a la Luna se produjo hace muchísimos años, concretamente el 7 de diciembre de 1972 y la realizó la misión Apolo 17. Desde ese día el ser humano no ha vuelto a pisar la Luna, sí lo han hecho robots de varias agencias espaciales, como por ejemplo la China.

Los astronautas de esa última misión fueron: Eugene Cernan, Harrison Schmitt y Ronald Evans. Evans se quedó en órbita, mientras que Cernan y Harrison alunizaban en el Mare Serenitatis. Fue una misión muy fructifera, pues en 87 h de misión los astronautas llegaron a alejarse 6.5 km del punto de alunizaje y recogieron 670 kg de material, también realizaron mediciones gravimétricas, sismológicas, térmicas y eléctricas de la microatmósfera lunar. Incluso realizaron varios experimentos. Como nota curiosa decir que al alunizar el módulo en la Luna se produjo un seísmo con una fuerza enorme, concretamente con una energía equivalente a 700kg de TNT.

Créditos: NASA

La NASA  ha facilitado miles de imágenes de todas las misiones Apolo, aquí tenéis el enlace para vuestro disfrute y curiosidad:

http://www.lpi.usra.edu/resources/apollo/catalog/70mm/

Como veis el ser humano llegó a la Luna y nos nuevos retos y horizontes son auténticamente maravillosos y somos unos verdaderos afortunados de poder verlos otra vez seguramente con la Misión Artemisa.

Para saber más:

Misión Artemisa NASA

Photo by Pixabay on Pexels.com
Anuncios