Archivo de la etiqueta: curso de astronomía

Cómo hacer nuestro curso de astronomía online

Tenemos un curso permanente en nuestra web de iniciación a la astronomía. Se titula «Aprende a disfrutar del Universo«, trata varios temas básicos de astronomía para tener las primeras nociones y manejarse con soltura entre las constelaciones o usando un telescopio de aficionado.

Anuncios

Realizarlo es muy sencillo, consta de cuatro temas y en cada tema varias cuestiones, sin necesidad de inscribirse tenéis que ir leyendo y comprendiendo cada tema en el tiempo que creáis oportuno, una vez estudiado el tema si lo tenéis claro tenéis que realizar las cuestiones propuestas. Cuando las hayáis terminado nos enviáis un correo con las respuestas de todos los temas y os enviamos un diploma de participación en el curso online.

En cualquier momento podéis enviarnos cualquier duda al siguiente correo:

josevte.miuniverso@outlook.com

Esta es la relación de temas, también hay un cuestionario final voluntario para saber sí habeis asimilado bien el contenido:

Aprende a disfrutar del Universo

Tema 1: Introducción a la astronomía, constelaciones, el brillo de las estrellas. Cuestiones y aplicaciones.

Tema 2: Orientación en el cielo, la eclíptica, distancias en el espacio y la distancia en las estrellas. Cuestiones y Aplicaciones.

Tema 3: Telescopios, tipos y uso. Cuestiones y Aplicaciones.

Tema 4: Fotografiar estrellas, qué es una estrella fugaz, aplicaciones para descubrir el cielo. Cuestiones y Aplicaciones. Anexo final: – La contaminación Lumínica y Reservas de cielo oscuro

Os recomendamos también nuestro primer libro de Astronomía: Curiosidades Astronómicas

Libro Curiosidades Astronómicas, Autor: Jose Vicente Díaz Martínez. Editorial Indie

Espero que os guste y que aprendáis mucha astronomía. Próximamente publicaremos otro curso más avanzado estar atentos a la web y os informaremos. Podéis suscribiros a la web para recibir todas las noticias y publicaciones que vamos realizando:

Photo by egil sju00f8holt on Pexels.com
Anuncios

Curso de Astronomía, parte 3

En esta tercera parte del curso hablaremos de los siguientes temas: Telescopios, tipos y uso. Cuestiones y Aplicaciones.

Al final del tema hay dos cuestiones y una actividad, son para simplemente contrastar lo aprendido y saber un poco más. Sí deseáis el diploma en pdf simbólico me enviáis las soluciones de las cuestiones al correo josevte.miuniverso@outlook.com, eso será cuando tengáis las 8 cuestiones hechas (2 por tema), entonces tendréis vuestro pequeño regalo en pdf. Sí vais a hacer el curso, sí os parece podéis dejar un comentario al final del tema o por privado en el correo, así tendremos nota de todas las personas que lo siguen y lo quieren hacer, no hay fecha fin del curso, estará siempre disponible.

El tema de hoy es muy extenso con lo que os recomiendo que lo toméis con calma y que comprendáis simplemente los conceptos, todo este tema os servirá para cuando compréis un telescopio y podáis saber sí es bueno o no, y también si tenéis ya uno en casa para sacar el máximo rendimiento de este.

1.- Telescopios, tipos y uso.

1.1 ¿Qué es un telescopio?

Los telescopios nos hacen ver objetos lejanos en el espacio, objetos que están a determinados años luz, cuando vemos los objetos estamos viendo la luz que enviaron hace el número de años luz a los que se encuentren. Sí observamos la estrella Próxima Centuari que se encuentra a 4.2 años luz, vemos la luz que se envió hace 4.2 años, sí nos remontamos aun más lejos a M13 (cúmulo de Hércules) que se encuentra a 25.000 años luz, viajamos en el tiempo 25.000 años!! y no os digo nada sí observamos galaxias… estas se encuentran a millones de años luz. Viajamos en el tiempo pero también viajamos en el espacio, el telescopio nos hace un aumento angular del objeto, con lo que nos “acerca” en el espacio a lo que estemos observando. Por tanto nuestro telescopio es una máquina del tiempo y del espacio :).

Veamos la definición científica del Telescopio:

Dispositivo óptico diseñado para recoger la mayor cantidad de luz posible procedente de objetos lejanos, y concentrarla en un espacio reducido para su observación y estudio”

Tenemos dos tipos de telescopios: terrestres y astronómicos. Los primeros tienen una lente adicional (llamada inversora) que pone derecha la imagen. Los telescopios astronómicos no tienen esta lente, y la  imagen se ve al revés. Esta lente adicional provoca pérdidas de luminosidad por tanto en el telescopio astronómico no se instala para así poder observar objetos más débiles.

1.2 Partes básicas de un Telescopio.

Tenemos las siguientes partes básicas, ya sea refractor o reflector:

Captura
Figura 1: Objetivo: lente o espejo que recoge la luz, Ocular: salida y amplificación de la imagen, Buscador: pequeño telescopio para búsqueda de los objetos, Montura: seguimiento de los objetos, Trípode: sujeción estable del telescopio. Tubo: sostiene la óptica del telescopio.

1.3 Diseños de telescopios.

Tenemos tres tipos básico de telescopios: Refractor, reflector y catadióptrico.

1) Telescopio refractor o kepleriano. Se basa en la refracción de la luz. Es un telescopio constituido por lentes, consiste en un tubo en cuya abertura tenemos una lente (objetivo) y en la salida un ocular (conjunto de lentes) para la amplificación de la imagen, que es donde colocamos el ojo

.Captura

Figura 2: esquema de un telescopio refractor, la imagen se focaliza en el plano focal, y se observa aumentada por el ocular.

Captura
   Figura 3: Telescopio refractor.

Os recomiendo estos telescopios para iniciarse en la astronomía tienen un kits muy completo:

Telescopio refractor

2) Telescopio reflector o newtoniano. Se basa en la reflexión de la luz en espejos. Cuenta con un espejo primario grande curvado (espejo objetivo) en el fondo del tubo, este espejo es el encargado de acumular y reflejar la luz, esta imagen es desviada a un espejo secundario plano que la desvía hacia un costado del tubo donde colocamos el ocular.

Captura
    Figura 4: Esquema de un telescopio reflector
Captura
  Figura 5: Telescopio reflector

Los modelos de gran abertura suelen ser más compactos y fáciles de manejar que los refractores, además con una misma abertura tiene un precio menor que un refractor. Son muy buenos para la observación de galaxias, nebulosas y cúmulos estelares, debido a que recogen mucha más luz que un refractor. Las desventajas de este telescopio es que es muy sensible a los golpes que pueden desalinear los espejos. Necesita cada cierto tiempo mantenimiento ya que el espejo va perdiendo reflectividad y es necesario realuminizarlo. También en algunos telescopios suele aparecer varias aberraciones debidas a los espejos: “coma” que provoca que se vean las estrellas en el borde del campo de visión en forma alargada y aberración esférica (estrellas redondeadas).

Te recomiendo este telescopio reflector:

Telescopio reflector

3) Telescopio catadióptrico. Este telescopio combina tanto lentes como espejos, y es el más utilizado en observatorios profesionales. Hay dos modelos el Schimidt-Cassegrain y el Maksútov-Cassegrain. En el Schimidt-Cassegrain la luz entra a través de una delgada placa de cristal (lente correctora) situada en la parte frontal del telescopio que ayuda a compensar o minimizar las aberraciones que genera el espejo, el espejo primario  refleja la luz hacia el espejo secundario, y éste la redirige hacia la parte posterior del tubo óptico, a través de un orificio en el espejo primario, donde se sitúa el ocular. De esta forma, la luz recorre varias veces la longitud el tubo antes de llegar al ocular. En el telescopio de Maksútov-Cassegrain el sistema es el mismo solo que se sustituye la lente correctora por una lente gruesa en forma de menisco.

Captura
Figura 6: Esquema de un telescopio Catadióptrico
Captura
Figura 7: Telescopio Catadióptrico.

Estos telescopios tienen una óptica excelente, y están corregidos de aberraciones, son muy buenos para todo tipo de observaciones: planetas, galaxias, nebulosas, etc. así como para astrofotografía. El único inconveniente es su alto precio en comparación con los demás tipos de telescopios.

Anuncios

2.- Características y Uso del Telescopio

2.1.-Características del Telescopio:

Los telescopios constan de dos piezas fundamentales: objetivo y ocular.

a) El Objetivo es el elemento que recoge la luz procedente del objeto astronómico y la concentra en un plano, el plano focal, donde se forma la imagen real o invertida. El objetivo debe ser un elemento convergente y puede ser una lente (telescopio refractor) o un espejo (telescopio reflector).

b) El ocular es el elemento que recoge la imagen generada por el objetivo y la hace accesible para el observador, que coloca el ojo tras el ocular. El ocular es siempre una lente o conjunto de lentes y es un elemento que podemos intercambiar para obtener diferentes aumentos en nuestro telescopio.

c) La distancia entre el objetivo (lente o espejo) y el plano focal se denomina distancia focal del telescopio (Ft). Esta distancia es importante pues nos ayudará a calcular los aumentos o amplificación del telescopio.

Captura

Esquema básico de un telescopio refractor la imagen aparece invertida en el plano focal (P), posición que coincide con el foco del ocular para una mejor visualización del observador.

 Para observar el objeto astronómico debemos colocar un ocular, estos llevan escritos unos números, la distancia focal del ocular.

Captura
 Oculares de diferentes distancias focales (17mm, 21mm y 24mm).

Para saber los aumentos del telescopio hay que dividir la distancia focal del telescopio entre la del ocular:

       Aumentos = (F telescopio/ F ocular)

 Por ejemplo sí a un telescopio con una distancia focal de 1000 mm  le colocamos un ocular de 20mm obtendremos un aumento de: (1000/20) = 50x, (los aumentos se suelen nombrar con la letra “x” detrás del número), sí colocamos un ocular de 10 mm tendríamos un aumento de 100x, es decir a menor distancia focal del ocular obtenemos más amplificación.

Estos aumentos o amplificación no significan que el objeto se vea tantas veces más grande, sino que es la imagen que observaríamos si estuviéramos tantas veces más cerca. Es decir sí un objeto que se encuentre por ejemplo a 300.000 km lo observamos con un aumento de 50x lo veríamos como si estuviéramos a 6000 km del objeto, valor obtenido dividiendo la distancia del objeto entre el aumento utilizado.

d) Denominamos campo visual al trozo de cielo que se ve a través del ocular. Obviamente cambiará cuando se cambie de ocular. Para conocerlo, hay saber el campo del ocular (normalmente lo lleva escrito), así como los aumentos que te proporciona. Entonces, para saber cuantos grados tiene el campo visual real, se aplica la fórmula siguiente:

Campo visual (º) = Campo del ocular (º) / aumentos

Por ejemplo con un ocular con 40º de campo que nos proporcione un aumento en nuestro telescopio de 50x tendremos un campo visual de: 40/50 = 0.8º.

e) Para determinar la luminosidad del telescopio (poder de captación de luz) debemos dividir la distancia focal del telescopio (Ft) entre diámetro de la abertura (D), a esta división se la llama razón focal:

Razón focal = Ft/D

Por ejemplo un telescopio de F=1000mm y D=150mm tendrá una razón focal de 6.6, sí tenemos otro telescopio con un objetivo D=200  y con la misma F se tendría una razón focal más pequeña  (Razón focal = 5) y por tanto sería más luminoso.(A menor razón focal más luminosidad)

Cuanto mayor sea la abertura y corta la focal más luminoso será nuestro telescopio. Los fabricantes de telescopios suelen describir sus telescopios en términos de razón focal, usando la siguiente terminología según el telescopio: f/6, f/8, etc. con este valor podemos conocer la distancia focal del telescopio simplemente multiplicando por el diámetro del objetivo. Por ejemplo un telescopio de 100mm de abertura y razón focal especificada por el fabricante como f/5 tendrá  una distancia focal de 500 mm.

f) Otro factor importante es la Resolución del telescopio (R). Llamamos resolución al poder que tiene el telescopio en separar dos objetos que están muy juntos. Esta medida se da en segundos de arco[1] (‘’) y viene determinada por el diámetro de la abertura, a mayor abertura mayor resolución del telescopio. Un segundo de arco es una cantidad muy pequeña, es aproximadamente el tamaño de una moneda vista a varios kilómetros de distancia.

La formula teórica es la siguiente:

                                                           R (“) = (0.138 / D)

Donde 0.138 es una constante para telescopios ópticos y D es la abertura en metros.

Por ejemplo partiendo de esta formula si tenemos un telescopio de diámetro D= 1m la resolución será de 0.138 segundos de arco, sí por el contrario tenemos un telescopio de D = 0.5 m (más pequeño que el anterior) la resolución sería de 0.276 segundos de arco. Por tanto con el telescopio de

D= 1m tendremos mayor poder de separación pues podremos ver objetos separados 0.138 “.

Este valor es siempre teórico pues la turbulencia atmosférica provoca que tengamos peores resoluciones que las indicadas en las especificaciones del telescopio.

Captura
Estrella Albireo (Cisne), a simple vista parece solo una estrella pero con telescopios se aprecia que tiene una acompañante a 35” de arco.
Captura
En el cielo la luna y el Sol tienen el mismo tamaño aparente (0.5º o 30 minutos de arco). Con el brazo extendido y usando el pulgar podríamos tapar la  luna o el Sol.

Como hemos visto la abertura del telescopio es muy importante a la hora de captación de luz y de resolución de detalle. Sí el telescopio capta más luz podemos ver estrellas de magnitud aparente más baja. Cuando hablamos de magnitud aparente de las estrellas nos referimos al brillo aparente que la estrella presenta. Esta escala de magnitudes fue introducida por el astrónomo griego Hiparco el año 129 a.c., este dividió las estrellas que se ven a simple vista en seis clases según su brillo, desde la primera magnitud (mayor brillo) hasta la sexta magnitud (menor brillo). Fue la primera escala de magnitudes de estrellas, pero no fue hasta 1856 cuando el astrónomo inglés Norman Pogson definió matemáticamente[2] esta escala. Obteniendo valores negativos para las estrellas más brillantes y valores muy bajos para las más débiles, así el Sol tiene magnitud aparente -26, la luna llena -12, la estrella Vega 0 y la estrella polar magnitud +2. Los objetos más débiles observados son de magnitud +30 y han sido observados por el telescopio espacial Hubble.

g) Para calcular la magnitud mínima que se puede observar con nuestro telescopio usaremos esta fórmula teórica:

Ml = 7.10 + 5 log D

Donde D es la abertura del telescopio en centímetros. Este valor es teórico ya que la perturbación atmosférica nos hará ver menos estrellas de las teóricas, normalmente para realizar observaciones de calidad se debe ir a lugares muy oscuros y alejados de ciudades. Los observatorios profesionales tienen sus telescopios en lugares a gran altitud y con climas muy estables.

 Otro factor que puede afectar a la magnitud limite que podemos ver es nuestra propia capacidad visual, nuestro ojo tarda alrededor de 20 minutos en adaptarse a la oscuridad, a partir de esos minutos podremos apreciar más estrellas a simple vista y a través del telescopio. Con el telescopio observaremos objetos más débiles al aumentar la abertura y obtendremos mayor resolución, como podemos apreciar en la siguiente tabla teórica. Estos resultados son para objetos puntuales, ya que los objetos más extensos como galaxias y nebulosas tienen repartida en su superficie la magnitud aparente.

Anuncios

 Resumen de Formulas:

Aumentos = (F telescopio/ F ocular)

Razón focal = ( F telescopio / D )

Campo visual (º) = Campo del ocular (º) / aumentos

Resolución (“) = (0.138 / D)  (D en metros)

Magnitud mínima =7.1 + 5 log D   (D en centímetros)

2.2-  Uso del telescopio.

En este apartado estudiaremos las diferentes partes del telescopio y a como utilizarlo para una correcta observación astronómica.

 Piezas del Telescopio y uso.

a) El buscador. Este pequeño telescopio se utiliza para la búsqueda del objeto astronómico, tiene un gran campo de visión, pocos aumentos y un aspa con la que podemos localizar el objeto fácilmente.

Captura
   Buscador

    Debemos alinearlo con el telescopio para que lo que observemos con el buscador lo observemos centrado en el telescopio. Para alinearlo primero se coloca en el telescopio un ocular de baja potencia y se busca un objeto muy alejado (a más de 1km), dejamos fijo el telescopio en ese punto y lo buscamos con el buscador. Para ello simplemente ajustamos los tornillos del buscador hasta que tengamos el punto observado en el centro del aspa, una vez hecho esto todo lo que observemos con el buscador lo veremos centrado en nuestro telescopio. Hay otros tipos de buscadores, como por ejemplo los de haz láser que utilizan un láser para la búsqueda de objetos, se suelen utilizar como complemento del buscador óptico.

b) Oculares. Podemos variar los oculares para tener diversas amplificaciones de la imagen astronómica, es importante disponer de varios oculares de diversas potencias (por ejemplo 40mm, 25mm y 6mm). En primer lugar para encontrar el objeto usaremos un ocular de baja potencia, seguidamente iremos variando el tipo de ocular según las amplificaciones que deseemos obtener y el tipo de objeto a observar.

Captura
Colocación de oculares en el telescopio

En el ocular aparte de la especificación de la distancia focal aparece una letra, esta nos indica el tipo de ocular, la siguiente tabla nos indica los tipos de oculares más comunes:

Ramsden (R)Ocular de dos lentes. Poca calidad. Sólo para poca potencia. Telescopios de iniciación
Huygens (H)Poca calidad, mal corregido de aberración cromática. Telescopios de iniciación
Kellner (K)Lentes acromáticas. Potencias medias, es de mejor calidad que los anteriores, con buena corrección cromática.
Ortoscópico (O)Triplete de lentes. Muy buenos para altas potencias, corrección cromática, gran definición y contraste.
Plöss y SuperPlös (P) y (SP)Gran campo y amplia gama de potencias. Ocular muy valorado para astronomía.
Erfle (E)Gran campo y muy adecuados para bajas potencias. Buena definición central.
Captura
Oculares Plöss de 25 y 6.5 mm, muy utilizados por su calidad y precio.

Adicionalmente a los oculares podemos interponerles una lente de Barlow, esta  nos permite multiplicar la focal de nuestro telescopio en función de la relación indicada por el fabricante (1.5x, 2x, etc). La más utilizada es la 2x (duplicador). Lo que conseguimos anteponiendo una lente de Barlow 2x a nuestros oculares es doblar su poder de aumento al duplicar la distancia focal, pero hay que tener cuidado pues suele provocar perdida de luminosidad con lo que es importante ir variando oculares hasta encontrar el que defina mejor la imagen. Funciona mejor con oculares de potencia media.

Captura
Lente Barlow 2x

Hay que recordar que lo importante en un telescopio, más que los aumentos, es el tamaño de la abertura ya que colecta más luz y podemos observar objetos más débiles. Muchos aumentos provocan pérdida de luz y campos de visión más pequeños.

Para observar los objetos que estén muy cerca del cenit o en el cenit se puede colocar un prisma cenital para observarlos cómodamente. Este se coloca ante el ocular y desvía la luz 90º. El inconveniente que tiene es que resta luz y campo.

Captura
 Prisma cenital y ubicación en telescopio

Oculares a muy buen precio en Amazon: https://amzn.to/2JrZevC

c) Filtros. Para observar los objetos astronómicos podemos colocar filtros al ocular o al objetivo para resaltar determinados detalles.

 Filtros de Ocular: Se colocan enroscados al ocular y se utilizan para filtrar la luz y resaltar determinadas características en los objetos astronómicos. Para planetas o la Luna se utilizan filtros de colores que resaltan la superficie y la atmósfera de los planetas. Cuando estamos en lugares con contaminación lumínica se pueden utilizar filtros para la polución lumínica LPR (ligth pollution o Sky Glow) que disminuyen el paso de longitudes de onda provenientes del alumbrado público (siempre que sean lámparas sodio o vapor de mercurio). Para nebulosas se utilizan filtros H-a que nos sirven para observar formaciones nebulosas que emiten en la banda del Hidrógeno.  Hay una gran diversidad de filtros en función de la longitud de onda que queramos resaltar o eliminar.

Captura
Filtros de colores para la observación planetaria y filtro antipolución lumínica

Filtros de Objetivo: Se colocan en el objetivo, son filtros usados para observación solar, también  existen filtros SUN para oculares pero pueden dañar a la larga el ocular o la vista.

Captura
 Filtro de objetivo para la observación del Sol y telescopio con filtro Solar.

d) Monturas del telescopio.

El cuerpo del telescopio se posa sobre una montura, que es la parte mecánica que se encarga del movimiento controlado del telescopio. La montura es una parte muy importante del telescopio pues nos permite observar los objetos con total estabilidad y el seguimiento de estos. Tenemos dos tipos básicos de montura: Montura Altazimutal y Montura Ecuatorial.

Montura Altazimutal

Estas monturas utilizan coordenadas horizontales con movimientos en dos ejes: el horizonte en acimut de 0º a 360º y la altura desde el horizonte al cenit (de 0 a 90º).

Captura

Este sistema de ejes aunque parezca sencillo tiene la complicación de que para el seguimiento del objeto es necesario actuar simultáneamente sobre los dos ejes. La imagen rota en el plano focal con lo que tenemos que compensar este movimiento, para esto se suele utilizar un mando para el seguimiento del objeto una vez encontrado. Sí tenemos un telescopio motorizado tipo Goto sigue perfectamente el movimiento de las estrellas, tan solo para alinearlo debemos dejarlo en forma horizontal enfocado hacia el norte y añadir al ordenador nuestras coordenadas geográficas, a partir de ahí el telescopio encontrará todas la estrellas a partir de un par de estrellas de referencia. Este tipo de monturas es la más utilizada en los observatorios profesionales, por su simpleza en la mecánica.

Telescopios de montura altazimutal: (1)  manual, (2) robotizado sistema GOTO y (3) modelo Dobson muy popular en astronomía por su fácil manejo.

                  

Montura Ecuatorial

Las estrellas tienen un movimiento aparente alrededor de la estrella polar en forma de circulo, a este movimiento se le denomina moviendo diurno de las estrellas. Mediante la montura ecuatorial podemos mover el telescopio en el sentido de esa rotación. Esta montura tiene dos ejes, el eje de ascensión recta A.R. (eje polar)  y el eje de declinación.

Captura
Captura
Montura ecuatorial alemana EQ, sí el eje polar está paralelo al eje del mundo su inclinación será igual a la latitud del lugar.

Un giro alrededor del eje polar  permite compensar el movimiento diurno del firmamento. Veremos a continuación un modo básico de poner en modo estación un telescopio de montaje ecuatorial. Dejar el telescopio en modo estación es dejarlo operativo para poder realizar el seguimiento de los objetos astronómicos con el simple movimiento de los mandos:

  1) Colocación del trípode.

Se colocará el trípode en un lugar completamente plano y colocando las patas en los puntos cardinales, haremos esto utilizando una brújula:

Captura
Captura

Se comprobará también que la montura esté perfectamente nivelada sobre el trípode para que los movimientos horizontales del telescopio sean totalmente correctos.

 2) Equilibrado de las pesas.

Equilibraremos las pesas del telescopio dejando el eje de las pesas y el tubo del telescopio paralelo al suelo, si el cuerpo del telescopio se vence hacia un lado moveremos las pesas hasta que esté equilibrado.

Captura

3) Latitud del Lugar.

La altura del polo celeste coincide con la latitud del lugar en el que estemos realizando la observación, así si estuviéramos en el polo norte el polo celeste estaría a 90º, sí estamos en Valencia estaría a 39º (latitud de Valencia: 39º28’12”N). La estrella polar está muy cerca del polo celeste, aproximadamente a 1º por esa razón todas la estrellas parecen girar alrededor de la estrella polar, porque el eje del mundo (eje polar) pasa muy cerca de la estrella polar. Si queremos que nuestro eje de A.R. este paralelo al eje terrestre, debemos ponerlo a la misma latitud (como hemos visto altura sobre el horizonte a la que se encuentra aproximadamente la estrella polar para mi localización) por tanto debemos inclinar nuestra montura a la altura de nuestra latitud con el mando correspondiente.

Captura
Inclinación de la montura del telescopio con la latitud del lugar

Una vez hecho esto no debemos volver a cambiar esta inclinación de la montura a no ser que cambiemos el lugar de observación a otra latitud diferente. Ahora solo falta colocar el tubo del telescopio enfocado hacia el norte, esto lo hacemos girando la montura en Acimut hasta que le cuerpo del telescopio esté hacia el norte (nos ayudamos con una brújula). Colocando el eje de declinación a 90º ya deberíamos ver la zona del polo celeste con la polar muy cerca de este, si esto es así tenemos perfectamente colocado el telescopio para un seguimiento de las estrellas con tan solo mover los mandos de Ascensión recta o declinación. Este método de alineación del telescopio es el más sencillo, pero hay otros mucho más complejos y por tanto más precisos, métodos necesarios si se va a realizar seguimientos de objetos para astrofotografía o estudios científicos.

Actualmente hay a la venta muchos telescopios robotizados que realizan la alineación de la montura simplemente introduciendo las coordenadas geográficas de la localización, y utilizando un sistema motorizado de seguimiento GOTO, la forma de colocar el telescopio en estación es la misma que hemos descrito para el telescopio de uso manual. Una vez puesto en estación el software del telescopio nos alineará el telescopio usando varias estrellas cercanas a la polar, consiguiendo una alineación perfecta del telescopio. Sí este telescopio tiene bases de datos de estrellas podremos encontrarlas fácilmente simplemente indicando al ordenador sus coordenadas o nombre.

Captura
Telescopio robotizado y montura GOTO
Anuncios

Aquí tenéis un resumen de esta parte del tema en vídeo:

Cuestiones:

1.- Supongamos que hemos adquirido un telescopio con las siguientes caracteristicas: Focal del telescopio 1000 mm, Diámetro de abertura 10 cm y tenemos varios oculares de F ocular 6 mm y otro de F ocular 20 mm Calcula:

  • Aumentos del telescopio para cada ocular. ¿Con que ocular obtenemos más aumentos?, supongamos que quiero observar la Luna, que aumento crees que sería el más recomendable y por qué.
  • Resolución
  • Razón focal
  • Magnitud mínima

2.- Supongamos que quieres adquirir un telescopio para hacer fotografía nocturna, ¿en que características te fijarías y que tipo de telescopio crees que sería el mas adecuado?, busca por internet en alguna tienda un ejemplo de ese tipo de telescopio.

Actividad

Sí tienes un telescopio realiza una observación astronómica de los objetos más interesantes de la noche, utiliza el programa stellarium para buscar la fecha que más te guste y ver qué objetos tienes en el cielo interesantes. Sí no tienes telescopio busca objetos o constelaciones interesantes para ver a simple vista. Diseña tras esto tu sesión de observación, en el siguiente enlace te explicamos cómo: https://josevicentediaz.com/astronomia-practica/diseno-de-una-noche-de-observacion-astronomica/

Anuncios

Curso de Astronomía, parte 2

En esta segunda parte del curso hablaremos de los siguientes temas: Orientación en el cielo, la eclíptica, distancias en el espacio y la distancia en las estrellas. Cuestiones y Aplicaciones.

Os recomendamos que os bajéis al ordenador la aplicación gratuita Stellarium, este es un planetario de código abierto que muestra un cielo auténtico en 3D, tal como lo que ve a simple vista, con binoculares o un telescopio. El programa os hará falta para algún ejercicio y para comprobar lo aprendido, pero intentaré sí alguien no se lo puede descargar que queden claros todos los contenidos. También recomendamos sí os es más fácil imprimir los contenido de todos los textos y que sigáis los vínculos que hay en cada tema para completar el texto. Tomarlo con calma pues el curso cuando se complete estará en la pestaña de paginas, para siempre, en la parte superior de la página web, con lo que lo podéis consultar siempre que lo queráis. Al final del tema hay dos cuestiones y una actividad, son para simplemente contrastar lo aprendido y saber un poco más. Sí deseáis el diploma en pdf simbólico me enviáis las soluciones de las cuestiones al correo josevte.miuniverso@outlook.com, eso será cuando tengáis las 8 cuestiones hechas (2 por tema), entonces tendréis vuestro pequeño regalo en pdf. Sí vais a hacer el curso, sí os parece podéis dejar un comentario al final del tema o por privado en el correo, así tendremos nota de todas las personas que lo siguen y lo quieren hacer, no hay fecha fin del curso, estará siempre disponible.

1.- Orientación en el cielo.

Las constelaciones nos pueden ayudar a orientarnos, siempre claro… que esté despejado :-). A partir de una sola constelación podemos encontrar el Norte y desde ahí el Sur, Oeste y Este. El método es muy sencillo, primero hablaremos de la constelación que marca el norte en el hemisferio norte de la Tierra, y más adelante la que marca el sur en el hemisferio sur.

Para las personas que se encuentren en el hemisferio norte de la Tierra hacemos lo siguiente: tenemos que encontrar la constelación de la Osa Mayor, esta constelación es muy fácil de encontrar por su característica forma ya que tiene forma de cucharon, sartén o carro. Explicaremos un poco qué es la Osa Mayor:

La Osa Mayor es una constelación visible durante todo el año en el hemisferio Norte. Entre los aficionados se la conoce con el nombre de ‘el carro’, por la forma que dibujan sus siete estrellas principales, aunque ha recibido otros muchos nombres. Es probablemente la constelación mejor conocida, tanto por la facilidad de recordar la forma del Carro como por el hecho de que la gente del hemisferio norte puede verla casi siempre.

Captura2

También, las dos estrellas de la porción frontal del Carro apuntan hacia la estrella Polar en que está en la constelación de la Osa Menor. La Osa Mayor se compone tanto de las siete estrellas comúnmente conocidas como el Carro como de una colección de estrellas más débiles que forman la cabeza y los pies de la Osa. Aparte de apuntar hacia Polaris (estrella Polar), el final del mango del carro puede seguirse en arco hacia la estrella Arcturus en Bootes. Si las dos estrellas que apuntan hacia Polaris se siguen en dirección opuesta, apuntan hacia la estrella Regulo en la constelación de Leo.

En la cola de la Osa Mayor, hay una estrella llamada Mizar (mag. 2,3) que tiene casi pegada a otra, llamada Alcor (mag. 4,0). Los egipcios usaban estas estrellas para saber el grado de fiabilidad a la hora tener buena vista, ya que son estrellas que están muy juntas y no siempre se ven las dos según la visión del observador. Se puede decir que fue el primer “text psicotécnico de la Historia”, pues los que las podían ver podían ser arqueros.

Captura
  Mizar y Alcor

Ya conocemos a nuestra amiga la Osa Mayor, pues ahora vamos a encontrar la Polar: Simplemente trazando en el cielo cinco veces la distancia entre las dos estrellas Merak y Dubhe, de la cabeza del carro y hacia la dirección del dibujo:

Captura

Y tenemos la estrella polar, así de sencillo :-). Por tanto encontraremos fácilmente el Sur, Este y Oeste.

Una vez encontrada la estrella polar podemos saber también aproximadamente la latitud en la que nos encontramos. Para saber la latitud simplemente mediremos en grados la altura de la estrella polar respecto del horizonte, por ejemplo en Valencia (España) está a 39º de latitud Norte, por tanto la Polar está en el cielo a una altura de 39º, sí estuviéramos en el Polo Norte la Polar estaría a 90º, y en el Ecuador a 0º.

Captura56
     La altura de la Polar en Latitud (39º)

Pero… la gran pregunta: ¿Cómo mido yo esas distancias angulares en el cielo?, pues con la mano, extendemos el brazo y con nuestra mano sobre las estrellas sabremos los grados aproximados:

Captura

 Como veis con un dedo podemos tapar el Sol y la Luna, ya que miden medio grado y nuestro dedo indice 1º. La mano abierta mide 20º de dedo a dedo, la Osa Mayor mide 25º, podemos comprobar que estirando el brazo hacia el cielo y abriendo la mano no podemos llegar a toda la Osa Mayor, por tanto sabremos que mide 20º seguro y un pico… los 5º que faltan.

Ahora ya sabemos que la constelación que marca el Norte celeste es la Osa Menor, y en concreto aproximadamente la estrella polar. ¿Pero qué constelación marca el polo sur celeste en el hemisferio sur de la Tierra?. Pues lo marca la constelación de Octans (el Octante). Concretamente un punto no muy poblado de estrellas en la constelación, al contrario que ocurre con la Osa Menor en esta constelación no hay una estrella brillante cercana al polo sur del firmamento.

octans
Punto que marca el polo sur del firmamento junto en la constelación del Octante, imagen de la Unión Astronómica Internacional.

La estrella más brillante cercana al polo sur celeste es la estrella Sigma Octantis, de magnitud 5.5, que está situada a aproximadamente 1º de ese punto (un grado es dos veces el tamaño aparente en el cielo de la Luna llena), por tanto algo alejado, y además una estrella solo observable con cielos muy limpios de contaminación lumínica.

La constelación del Octante conmemora a un instrumento conocido como el Octante, un antecesor del sextante y que se utilizaba para medir la posición de las estrellas.

2.- La Eclíptica

La Eclíptica es la línea curva por donde transita el Sol en la esfera celeste en su transito aparente observado desde nuestro planeta. Está formada por la intersección del plano de la órbita terrestre con la esfera celeste. Es la línea recorrida por el Sol a lo largo de un año respecto del fondo de las estrellas.

Dibujo en el cielo de la línea de la eclíptica para un día determinado del año, podemos ver al Sol, varios planetas y constelaciones del zodiaco. Pulsar para ver los detalles.

Plano de la Eclíptica se denomina al plano medio de la órbita de la Tierra alrededor del Sol. Contiene a la órbita de la Tierra alrededor de nuestra estrella y también al recorrido anual aparente del Sol visto desde la Tierra. Este plano se encuentra inclinado 23,5º con respecto al plano del Ecuador de nuestro planeta.

plane

También podemos encontrar cerca de la línea de la eclíptica a todos los planetas del Sistema solar y a asteroides del cinturón principal. Es el plano de referencia primario cuando se describe la posición de los cuerpos en el sistema solar. También la línea de la eclíptica transita por las llamadas constelaciones del zodiaco.

3. Las distancias en el espacio

En el espacio la distancia entre los objetos astronómicos es enorme, inimaginable para un humano. Con lo que tenemos que buscar distancias que sean un poco más comprensibles y que no nos den números con muchos ceros. Para ello se utilizan distancias interplanetarias como la unidad astronómica o distancias interestelares como el año luz o el pársec. Hablaremos de cada una de ellas con detalle.

La unidad de distancia en el Sistema Solar es la denominada Unidad Astronómica (UA), se trata de la distancia promedio desde la Tierra al Sol, esta es equivalente a:

149.597.870 km 

La distancia entra la Tierra y  el Sol toma entonces el valor de 1 UAUnidad astronómica

En Unidades astronómicas la distancia de los planetas al Sol es la siguiente:

Mercurio 0,387, Venus 0,723, Tierra 1,00, Marte 1,524, Júpiter 5,203, Saturno 9,539,  Urano 19,192 y Neptuno 30,058.

A la luz, que su velocidad es de casi 300.000 km/s, le cuesta 499 segundos recorrer una unidad astronómica (8.3 minutos), de modo que nosotros desde la Tierra, vemos el Sol tal como en realidad se mostraba 8.3 minutos antes.

La distancia de una unidad astronómica nos puede parecer enorme, pero es insignificante en comparación con un año luz. Un año luz posee 63.240 unidades astronómicas.

Como hemos visto para el caso del sistema solar usamos la unidad astronómica (ua), que es la distancia media de la tierra al Sol, pero para lugares muy alejados del sistema solar usamos el año luz. Este se define así:

Año luz: es la distancia que recorre la luz en el vacío en un año. Como la velocidad de la luz es de 299.792 km/s, y un año tiene 31536000 segundos (se considera el año juliano: 365.25 días), la luz recorre en un año: 9,46 × 10¹² km = 9 460 730 472 580,8 km a ese espectacular número lo llamamos un año luz.

anoluz

Para distancias en el sistema solar también podemos usar, aparte de la unidad astronómica, los segundos luz o minutos luz, así por ejemplo la distancia de la Tierra al Sol es de 8.31 minutos luz. Para distancias aun más lejanas sobretodo para estrella muy alejadas y galaxias se utiliza el Pársec, que equivale a 3.26 años luz, y para distancias mucho más lejanas el kilopársec o el megapársec.

  • Estrellas y galaxias algunas distancias:
  • Próxima Centauri: 4.24 años luz
  • Vega: 25.3 años luz
  • Deneb: 1425 años luz
  • Radio de nuestra galaxia: 50.000 años luz
  • M31 (Galaxia de Andrómeda): 2.5 millones de años luz
  • M101 (Galaxia del Molinete): 25 millones de años luz

En comparación con las enormes distancias anteriores como hemos visto los diversos componentes del Sistema Solar están a sólo unos minutos o pocas horas luz de distancia de la Tierra, como podéis ver en el espectacular gráfico de Theplanets.org.

FB_IMG_1493707303669

Las distancias en el espacio son enormes y es complicado darles un número con las unidades que usamos en el día a día en la Tierra, como son los metros o kilómetros, el espacio entre estrellas es de millones o billones de kilómetros, y entre galaxias aun mucho mayor con lo que tenemos que buscar unidades que nos simplifiquen los números y no nos sea engorroso utilizarlas.

Cuestiones:

1.- Abre el programa Stellarium y dibuja en el cielo el plano de la eclíptica para la siguiente hora: 04h20m del día 21 de julio de 2020. (Para verla lleva el puntero al lado izquierdo de la pantalla, en el menú que aparecerá pulsa en «Opciones de visualización» o la tecla F4, en la ventana emergente elige «Marcas» y selecciona «eclíptica (de fecha)». Nota: Para ver las constelaciones lleva el puntero a la parte inferior y selecciona sus dibujos y nombres.

  • ¿Qué objetos interesantes que no sean estrellas observas en el plano de la eclíptica?
  • Qué constelaciones observas, identificalas. ¿Son del zodiaco?
  • Haz una captura de pantalla de la imagen de la eclíptica.

2.- ¿Cuál es la estrella más cercana a la Tierra?

  • Anota toda la información que tengas de esa estrella.
  • Pasa su distancia en años luz a kilómetros para darte cuenta de lo tremendamente alejado que está.

Actividad:

Ves al portal ESASky de la Agencia Espacial Europea http://sky.esa.int selecciona el modo explorador y dale al botón con el dado (se encuentra en la parte superior izquierda) para ver distintos objetos celestes aleatorios, o pulsa el pergamino para elegir otros objetos que quieras ver (si ves borroso el objeto usa la ruedecita del ratón para alejarte y verlo mejor). Disfruta viajando por los objetos del Universo cercano.

Photo by Baraa jalahej on Pexels.com
Anuncios

Curso de Astronomía online: Aprende a disfrutar del Universo

Para los que estéis en casa y queráis saber o distraeros con un poco de Astronomía comenzamos un pequeño curso para hacer online muy sencillo llamado: «Aprende a disfrutar del Universo«, son cuatro capítulos para aprender a reconocer las constelaciones, saber qué son las estrellas, usos básico del telescopio y aplicaciones para aprender aún más astronomía y el firmamento.

En cada capítulo tenéis la teoría y luego una serie de sencillas cuestiones prácticas para aprender un poco más, así como enlaces a programas interesantes para profundizar en los temas. Los temas están fijos en una pestaña que podéis ver en la parte de arriba del blog. Una vez finalizado el curso tendréis a vuestra disposición todo el contenido en esa página para volver a repasar o pasar a otras personas que queráis este mini curso.

Los que hagan todas las cuestiones y me envíen un correo con las soluciones, les enviaré en pdf un diploma simbólico en nombre del blog como que han realizado el curso. Este es gratuito y el único fin es divulgar astronomía y que aprendáis un poco más del firmamento, luego cada uno puede profundizar aun más sí le gusta todo lo que ha aprendido. Os dejo el guión de curso:

Aprende a disfrutar del Universo:

Tema 1: Introducción a la astronomía, constelaciones, el brillo de las estrellas. Cuestiones y aplicaciones.

Tema 2: Orientación en el cielo, la eclíptica, distancias en el espacio y la distancia en las estrellas. Cuestiones y Aplicaciones.

Tema 3: Telescopios, tipos y uso. Cuestiones y Aplicaciones.

Tema 4: Fotografiar estrellas, qué es una estrella fugaz, aplicaciones para descubrir el cielo. Cuestiones y Aplicaciones. Anexo final: – La contaminación Lumínica y Reservas de cielo oscuro.

Os recomendamos también nuestro libro para completar el curso:

Curiosidades Astronómicas

Únete a 12.539 seguidores más
Anuncios

Escuchar estrellas fugaces

Hay una forma de «observar» estrellas fugaces sí tenemos el cielo lleno de nubes, o sí es de día y no podemos verlas. Podemos escuchar la reflexión de las ondas de radio emitidas desde la Tierra cuando estas regresan a nuestro planeta por la ionización los meteoroides al entrar a la atmósfera. Esta ionización funciona como un espejo de las ondas de radio, normalmente estas ondas escapan de nuestro planeta hacia el espacio, pero al cruzar un meteoro ioniza momentáneamente la zona y refleja las ondas produciendo un sonido como un silbido agudo que podemos escuchar.

Captura

El equipo para escucharlo es parecido al de los radioaficionados, una antena emite ondas de radio hacia la atmósfera y otra estación receptora puede escuchar el paso de los meteoros cuando reflejan las ondas.

Sí no disponemos del equipo necesario para escucharlo y analizar los datos, podemos escuchar online estos pasos de meteoros, hay muchas estaciones de observación que emiten online. Os recomiendo que lo escuchéis, es muy curioso escuchar los silbidos de los meteoros:

http://topaz.streamguys.tv/~spaceweather/

*Más información sobre cómo montar una estación de radiometeoros y enlaces de estaciones online:

-Artículo de Enric Fraile sobre Radiometeoros:

http://www.somyce.org/modules.php?name=Content&pa=showpage&pid=63

-Info Radiometeros:

http://www.somyce.org/modules.php?name=Content&pa=showpage&pid=59

-Estaciones Online:

http://www.rmob.org/livedata/main.php

http://www.iap-kborn.de/Juliusruh-Meteor-Radar.173.0.html?&L=1

cropped-universo_blog.jpg