Archivo de la etiqueta: formación del sistema Solar

La formación del Sistema Solar hace 4600 millones de años

Tenemos que remontarnos a hace aproximadamente 4600 millones de años cuando a partir de una nube molecular de gas y polvo se empezó a formar lo que hoy conocemos como Sistema Solar.

El detonante que hizo que la nube molecular colapsara dando origen a nuestro Sistema Solar no es muy bien conocido, sí bien una teoría dice pudo ser producido por la explosión de una supernova cercana que envió una onda expansiva de gases calientes que se topó con la nube provocando su colapso. Sería una explicación del colapso que fue necesario para la formación del sistema Solar, pero solo es una hipótesis y actualmente se sigue investigando en ello.

De echo hay muchos estudios sobre la formación de nuestra estrella y como consecuencia la formación del sistema solar, pero uno reciente a partir de datos de la misión Gaia revela que nuestra estrella se pudo haber formado por el paso cercano de una galaxia enana que orbita continuamente nuestra galaxia, la galaxia Sagitario, que es una galaxia satélite de la Vía láctea. Es muy pequeña por eso está en el rango de galaxia enana, de echo tiene un diámetro de unos 10.000 años luz, se encuentra actualmente a 70.000 años luz de la Tierra y se mueve continuamente en una órbita polar sobre el disco galáctico a unos 50 000 años luz del centro de nuestra galaxia. El próximo choque ocurrirá en unos 100 millones de años y finalmente se fusionará con la Vía Láctea.

Esta pequeña galaxia realiza pasos periódicos por el disco de nuestra galaxia, la va moldeando y removiendo y agitando el gas y el polvo galáctico, en uno de esos pasos pudo haber sembrado la zona donde está actualmente el Sol y haber sido el detonante para la creación de estrellas y por consiguiente de sistemas planetarios.

Captura

Pero vamos a explicar cómo se formó el sistema solar una vez se provocaron las inestabilidades gravitacionales, esas inestabilidades provocaron el colapso de la nube molecular y comenzó la formación del Sistema Solar actual. La mayor parte del momento angular estaba en la zona periférica al centro de la nube lo que evitó el colapso sobre el protosol que estaba en su centro, en los alrededores del Sol la materia giraría más deprisa que al principio del colapso. La zona central tenía una enorme temperatura, mucha densidad y además se producían procesos muy intensos como, turbulencias o colisiones. Estos procesos tan intensos provocaron que los elementos pesados estuvieran más presentes en el centro de la nube y los elementos más ligeros más alejados del centro. Por tanto en la zona cercana al protosol se formarían los planetas rocosos. A partir de unos 20 UA (unidades astronómicas) la presencia de elementos ligeros sería más abundante lo que permitiría la formación de los planetas gaseosos y helados.

El proceso de formación de los planetas se debió a procesos de acreción de material, lo que se denomina acrecimiento. Debido a la inestabilidad gravitacional de la nube se formarían aglomeraciones de materia de forma aleatoria y asimétrica, esto instaría a colapsos de trozos de la nube. Los trozos más grandes tendrían la masa suficiente para empezar a retener material, este material serían pequeños granos de polvo o hielo que colisionando a baja gravedad irían formando trozos más grandes, y formando finalmente planetesimales. Los trozos más pequeños que los planetesimales no ejercen suficiente atracción gravitatoria como para agregar otras partículas se agregarían entonces a partir de fuerzas intermoleculares del tipo Van der Valls.

Además se produce lo que se denomina un movimiento browniano, este movimiento browniano es un movimiento aleatorio que se produce cuando las pequeñas superficies son bombardeadas por partículas del fluido sometidas a una alta agitación térmica.

Las perturbaciones entre los protoplanetas y Júpiter, dieron lugar a colisiones y a la excitación dinámica de poblaciones de pequeños cuerpos que aún no habían sido acretados por los protoplanetas. Esta excitación provocó que los asteroides localizados cerca de Júpiter sufrieran un aumento de sus velocidades orbitales relativas, llevando a la fragmentación de los mismos cuando se producía una colisión y evitando la aglomeración en objetos de mayor tamaño. Así se formó el actual Cinturón principal de asteroides entre Marte y Júpiter.

Después de 600 millones de años tras la formación inicial del sistema solar Júpiter y Saturno entraron en resonancia 2:1 en ese momento se produjo una situación de desestabilización que provocó que fueran afectadas las órbitas de Urano y Neptuno, que llegarían incluso a intercambiar sus posiciones respecto al sol, es lo que determina el Modelo de Niza.

Captura

Esas interacciones gravitatorias provocaron un barrido de la población externa de planetesimales helados, que se quedarían en la zona que actualmente llamamos cinturón de Kuiper o región de objetos Trans-Neptunianos (TNOs). Provocando además mezclas de cuerpos con diferentes composiciones entre la zona externa del CP y entre los asteroides Troyanos de Júpiter.

Una parte de los planetesimales que sobrevivieron a estas colisiones a lo largo de la formación del sistema solar los encontramos hoy en día orbitando en torno al Sol, son los asteroides y los cometas, por tanto son Reliquias de la formación del Sistema Solar.

Captura

[1] UA: Unidad astronómica: Distancia media de la Tierra al Sol ( 149.675.000 km)

Anuncios

El Choque con otra galaxia pudo haber iniciado la formación del sistema solar

Hay muchos estudios sobre la formación de nuestra estrella y como consecuencia la formación del sistema solar, pero uno reciente a partir de datos de la misión Gaia revela que nuestra estrella se pudo haber formado por el paso cercano de una galaxia enana que orbita continuamente nuestra galaxia, la galaxia Sagitario, que es una galaxia satélite de la Vía láctea. Es muy pequeña por eso está en el rango de galaxia enana, de echo tiene un diámetro de unos 10.000 años luz, se encuentra actualmente a 70.000 años luz de la Tierra y se mueve continuamente en una órbita polar sobre el disco galáctico a unos 50 000 años luz del centro de nuestra galaxia. El próximo choque ocurrirá en unos 100 millones de años y finalmente se fusionará con la Vía Láctea.

Esta pequeña galaxia realiza pasos periódicos por el disco de nuestra galaxia, la va moldeando y removiendo y agitando el gas y el polvo galáctico, en uno de esos pasos pudo haber sembrado la zona donde está actualmente el Sol y haber sido el detonante para la creación de estrellas y por consiguiente de sistemas planetarios.

Créditos: Gabriel Pérez Díaz, SMM (IAC)

Tenemos que remontarnos a hace aproximadamente 4600 millones de años cuando a partir de una nube molecular de gas y polvo se empezó a formar lo que hoy conocemos como el Sistema Solar. El detonante que hizo que la nube molecular colapsara dando origen a nuestro Sistema Solar era hasta la fecha un misterio, aunque habían hipótesis de que tal vez la explosión de una supernova cercana habría enviado una onda expansiva de gases calientes que se topó con la nube provocando su colapso. Sería una explicación del colapso que fue necesario para la formación del sistema Solar, pero este nuevo descubrimiento de la posible acción de la galaxia enana Sagitario es bastante posible.

Gráfico de los choque de la galaxia enana Sagitario contra la Vía Láctea a lo largo de miles de millones de año. Créditos: IAC

Tenéis en el siguiente enlace el artículo que explica esta nueva hipótesis del formación de nuestra estrella y del sistema solar:

T. Ruiz-Lara et al., The recurrent impact of the Sagittarius dwarf on the Milky Way star formation history. DOI: 10.1038 / s41550-020-1097-0

Anuncios

Anillos en V1247 Orionis: zonas de formación de planetas

Esta imagen del observatorio ALMA (Atacama Large Millimeter / submilimétrico) muestra a la estrellas V1247 Orionis, una estrella caliente y joven rodeada por un anillo muy dinámico de gas y polvo, llamado disco circumestelar.

orionisCréditos: ALMA (ESO / NAOJ / NRAO) / S. Kraus (Universidad de Exeter, Reino Unido)

Este disco que vemos en la imagen se divide en dos partes: un anillo central de materia claramente definido y una estructura más ténue y más distante hacia el exterior del disco.

Se cree que la región entre el anillo y la zona de banda oscura, se ha formado por un joven planeta que ha cavado su camino a través del disco. Mientras que un planeta orbita alrededor de su estrella, su movimiento crea zonas de alta presión a cada lado de su paso, algo así como un barco que crea ondas de choque mientras avanza a través del agua. Estas áreas de alta presión puede llegar a ser barreras protectoras alrededor de los sitios de formación planetaria; las partículas de polvo se encuentran atrapadas dentro de ellas durante millones de años, dando tiempo y espacio para reunirse y crecer, creando así planetesimales y más tarde planetas.

Esta imagen revela no sólo la forma de media luna del polvo atrapado en el borde exterior de la banda oscura, sino también regiones del exceso de polvo en el interior del anillo. Estos estudios pueden dar solución a un problema importante en las teorías de formación de los planetas, que establece que las partículas deben viajar (en Inglés “drift”) hacia la estrella central antes de tener tiempo para crecer hasta el tamaño de  planetesimales (el llamado problema radial “drift”). Que quede el polvo atrapado en los discos puede ser la solución al problema.

Para saber más:

http://www.almaobservatory.org/es/inicio/

cropped-cropped-3-31.jpg

El Sol: nuestra maravillosa estrella

Contaré una increíble historia de creación de una estrella, concretamente de nuestro Sol. Hay que remontarse cinco mil millones de años atrás para empezar a hablar de la creación de nuestra estrella, por esos años nuestra zona en la galaxia la ocupaba un montón de gas y polvo (una nebulosa) que vagaba por el espacio tan tranquilamente, pero algo sucedió.. tal vez la acción de una supernova enviándonos sus ondas de choque o el choque de masas enormes de gas y polvo hizo que esa nebulosa se comprimiera. Cuando la materia se comprime aparecen procesos energéticos enormes, partes de la nebulosa comienzan agregarse y la acción de la gravedad va formando la estrella, estos procesos concentran una enorme cantidad de calor, cuando se llega a la cifra mágica de los 10 millones de grados se desencadenan procesos nucleares (fusión nuclear) que hacen que la estrella se encienda. Con la fusión nuclear, el Sol convierte el hidrógeno en helio, y la masa restante del proceso se convierte en energía. Hay un equilibro entre la presión del interior de la estrella y la gravedad de la misma que evita que se colapse.

gbv

El Sol observado en diferentes longitudes de onda por la sonda SOHO, imágenes de NASA.

Por tanto nuestra estrella es una enorme bola de gas compuesta por un 75% de hidrógeno y un 25% de helio. Libera plasma, que forma el viento solar (heliosfera). La Tierra está protegida por un campo magnético que repele ese viento solar, pero se cuela por los polos magnéticos terrestres, formando las auroras polares. Es una estrella amarilla de tipo G que se encuentra en la secuencia principal (90% de su vida). Después se irá enrojeciendo y agrandando (gigante roja), hasta que estalle y forme una nebulosa planetaria, quedando como una estrella enana blanca.

Ciclo vida del Sol

Ciclo de vida del Sol, la escala está en miles de millones de años. Actualmente el Sol tiene 4600 millones de años. Sobre los 8 mil millones de años irá calentándose hasta convertirse en una gigante roja, cuando tenga la edad de 11 mil millones de años estallará y quedará en el centro una enana blanca.

Sol_Tierra

El Sol es enorme en comparación con la Tierra, se pueden colocar 108 Tierras a lo largo de todo el diámetro del Sol (el diámetro del Sol es de 1.3 millones de kilómetros), es tan grande que contiene el 99% de toda la masa del Sistema Solar.

Vídeo observación del Sol por la sonda SOHO.

El Sol es una estrella muy bonita y la tenemos muy cerca, aunque no es de las más grandes que existen es una estrella muy pequeña pero para nosotros es una gran estrella pues gracias a ella existe la vida en la Tierra.

Vídeo comparación del tamaño de los planeta con el Sol y con otras estrellas.

Aunque nos guste mucho ni que decir tiene que para observarlo hay que tomar medidas protectoras para proteger nuestro ojos:

– No observar el Sol directamente sin la debida precaución, produce ceguera.

  • Nunca debe observarse el sol directamente con aparatos como cámaras, telescopios, prismáticos… ni con filtros no homologados, ni con gafas de sol.
  • No utilizar filtros caseros no homologados (películas fotográficas veladas, gafas de sol, radiografías, cristales ahumados,…) ya que no filtran todas las radiaciones solares
  • Se recomienda el uso de filtros homologados, que se venden en ópticas, planetarios y tiendas especializadas.

– Con prismáticos o telescopios (jamás  observarlo directamente sin un filtro solar), lo podemos observar:

– Usando el método de proyección sobre alguna cartulina

– Usando filtro Mylar

– Usando otros filtros astronómicos especiales.

Recordad que para observar el Sol directamente con telescopios se coloca el filtro en el objetivo:

Filtros de Objetivo (filtro Mylar): Se colocan en el objetivo, son filtros usados para observación solar

Captura Filtro de objetivo para la observación del Sol y telescopio con filtro Solar.

Algunos telescopios de baja gama suelen tener filtros SUN para oculares pero pueden dañar a la larga el ocular o la vista por tanto no los debéis usar ya que pueden ser muy peligrosos.

Y para finalizar estas pinceladas sobre el Sol, un espectacular vídeo. El 11 de febrero 2015 se cumplieron cinco años del lanzamiento al espacio del Observatorio de Dinámica Solar (SDO) de NASA, que proporciona imágenes increíblemente detalladas del sol las 24 horas del día. SDO ha proporcionado una visión sin precedentes de la actividad solar

En honor al quinto aniversario de SDO, la NASA ha publicado un vídeo mostrando los aspectos más destacados de los últimos cinco años de observación del sol. Es un vídeo espectacular en el que podemos ver nubes gigantes de material lanzadas al espacio, la danza de bucles gigantes flotando en la corona, y enormes manchas solares en la superficie del Sol.

Estas imágenes son un ejemplo de la clase de datos que SDO proporciona a los científicos. Al observar el sol en diferentes longitudes de onda – y por lo tanto diferentes temperaturas – los científicos pueden observar los movimientos del material solar a través de la corona, que contiene pistas de las  causas de las erupciones solares, investigan que es lo que calienta la atmósfera del Sol hasta conseguir que sea 1.000 veces más caliente que su superficie, y por qué los campos magnéticos del sol están constantemente en movimiento.

Más información sobre el Sol:

Sonda Soho

Meteorología espacial

logo_josevicente

Los cuerpos menores: reliquias de la formación del Sistema Solar

Tenemos que remontarnos a hace aproximadamente 4600 millones de años cuando a partir de una nube molecular de gas y polvo se empezó a formar lo que hoy conocemos como Sistema Solar. El detonante que hizo que la nube molecular colapsara dando origen a nuestro Sistema Solar pudo ser producido por la explosión de una supernova cercana que envió una onda expansiva de gases calientes que se topó con la nube provocando su colapso. Sería una explicación del colapso que fue necesario para la formación del sistema Solar, pero solo es una hipótesis y actualmente se sigue investigando en ello.

En el caso de nuestro Sistema Solar las inestabilidades gravitacionales provocaron el colapso de la nube molecular y comenzó la formación del Sistema Solar actual. La mayor parte del momento angular estaba en la zona periférica al centro de la nube lo que evitó el colapso sobre el protosol que estaba en su centro, en los alrededores del Sol la materia giraría más deprisa que al principio del colapso. La zona central tenía una enorme temperatura, mucha densidad y además se producían procesos muy intensos como, turbulencias o colisiones. Estos procesos tan intensos provocaron que los elementos pesados estuvieran más presentes en el centro de la nube y los elementos más ligeros más alejados del centro. Por tanto en la zona cercana al protosol se formarían los planetas rocosos. A partir de unos 20 UA[1] la presencia de elementos ligeros sería más abundante lo que permitiría la formación de los planetas gaseosos y helados.

Captura

 El proceso de formación de los planetas se debió a procesos de acreción de material, lo que se denomina acrecimiento. Debido a la inestabilidad gravitacional de la nube se formarían aglomeraciones de materia de forma aleatoria y asimétrica, esto instaría a colapsos de trozos de la nube. Los trozos más grandes tendrían la masa suficiente para empezar a retener material, este material serían pequeños granos de polvo o hielo que colisionando a baja gravedad irían formando trozos más grandes, y formando finalmente planetesimales. Los trozos más pequeños que los planetesimales no ejercen suficiente atracción gravitatoria como para agregar otras partículas se agregarían entonces a partir de fuerzas intermoleculares del tipo Van der Valls.

Seguir leyendo Los cuerpos menores: reliquias de la formación del Sistema Solar