Archivo de la etiqueta: planetas

Llamaradas violentas de estrellas enanas que eliminan atmósferas planetarias

Las violentas erupciones de gas muy caliente de pequeñas estrellas jóvenes pueden hacer que los planetas que las orbiten sean inhabitables. El telescopio espacial Hubble está observando estas estrellas a través de un programa llamado HAZMAT (Zonas Habitables y actividad de enanas M a través del tiempo). Se trata de un estudio en ultravioleta de las enanas rojas, conocidas como “enanas M”, que son de las estrellas más abundantes y longevas de la galaxia, el estudio se centra en tres edades diferentes: joven, intermedia y vieja.
hazmatEn el dibujo anterior se puede ver como una enana roja joven y  muy activa está destrozando la atmósfera de un planeta en órbita. Aproximadamente tres cuartos de las estrellas en nuestra galaxia son enanas rojas. Créditos: ilustraciones: NASA, ESA y D. Player (STScI). Ciencia: NASA, ESA y P. Loyd y E. Shkolnik (Universidad Estatal de Arizona).

Las enanas rojas jóvenes son estrellas muy activas, que producen erupciones ultravioletas que disparan plasma a millones de grados con una intensidad que podría influir en la química atmosférica de los planetas y posiblemente eliminar casi por completo estas atmósferas. El equipo del proyecto HAZMAT descubrió que las erupciones de las enanas rojas más jóvenes que observaron, e alrededor de 40 millones de años de edad, son entre 100 a 1.000 veces más energéticas que cuando las estrellas son más viejas. Esta es la edad en que los planetas terrestres se están formando alrededor de sus estrellas, con lo que la vida sería difícil en esas condiciones. 

Para saber más:

Astrophysical Journal (2018): arxiv.org/abs/1810.03277 

Astrónomos atrapan a la estrella enana roja lanzando una enorme llamarada:  https://phys.org/news/2018-10-astronomers-red-dwarf-star-superflare.html

cropped-logi2.jpg

 

Anuncios

Kronos: La estrella devoradora de planetas

Una estrella similar al sol parece haber devorado parte de su propia descendencia planetaria, lo que llevó a los investigadores a apodarla como el famoso titán Kronos de la mitología griega que devoró a sus propios hijos, temiendo que lo derrocaran.

La estrella en concreto tiene un nombre técnico que da menos miedo, se llama HD 240430 y es parte de un sistema binario con la estrella HD 240429, apodada Krios. Este par de estrellas se encuentran a unos 320 años luz de la Tierra.

kronos y kriosPosición de Kronos y Krios en el cielo, los podemos encontrar en la constelación de Casiopea como un par de estrellas de magnitud 10, observable con telescopios. 

Ambas tienen una edad de aproximadamente 4 mil millones de años, lo que sugiere que nacieron de la misma nube interestelar y que inicialmente compartieron la misma composición química, pero sin embargo ambas tienen una diferencia significativa en su abundancia química. Según un análisis de astrofísicos de  la Universidad de Princeton sugiere que estas estrellas han llevado vidas muy diferentes. Krios tiene concentraciones notablemente más pequeñas de elementos como el litio, el magnesio y el hierro flotando en su atmósfera que su compañera Kronos.

Que la estrella Kronos tenga tal cantidad de elementos sugiere que ha devorado varios planetas rocosos en órbita a lo largo de su vida. La estrella habría tomado los elementos químicos de 15 masas terrestres aplastadas y dispersadas en su atmósfera explicando así la mezcla de exceso de elementos de la estrella.

planetas de KronosPlanetas devorados por Kronos, Ilustración: NASA

Sin embargo, la forma en que la estrella devoraría a sus planetas no está clara. Tal vez otra estrella pasó muy cerca, interrumpiendo las órbitas de los planetas exteriores alrededor de Kronos, que luego distorsionaron los caminos de esos mundos internos y los enviaron hacia su estrella. El sistema de Krios, a dos años luz de distancia, podría haber escapado del cataclismo.

Si esto le sucedió a Kronos, cualquier planeta externo gigante que le rodee podría tener órbitas extendidas, lo que sugiere que participaron del mismo cataclismo que llevó a la desaparición de sus hermanos planetarios. Para probar esto, los astrofísicos que han realizado este estudio han comenzado a buscar planetas gigantes alrededor de Kronos y Krios, de momento no se ha encontrado ningún mundo de este tipo, pero la misión Gaia de la Agencia Espacial Europea debería obtener buenos resultados, con lo que se está usando este telescopio para completar los datos.

Para saber más:

Artículo científico: https://arxiv.org/pdf/1709.05344.pdf

cropped-cropped-3-31.jpg

Anillos en V1247 Orionis: zonas de formación de planetas

Esta imagen del observatorio ALMA (Atacama Large Millimeter / submilimétrico) muestra a la estrellas V1247 Orionis, una estrella caliente y joven rodeada por un anillo muy dinámico de gas y polvo, llamado disco circumestelar.

orionisCréditos: ALMA (ESO / NAOJ / NRAO) / S. Kraus (Universidad de Exeter, Reino Unido)

Este disco que vemos en la imagen se divide en dos partes: un anillo central de materia claramente definido y una estructura más ténue y más distante hacia el exterior del disco.

Se cree que la región entre el anillo y la zona de banda oscura, se ha formado por un joven planeta que ha cavado su camino a través del disco. Mientras que un planeta orbita alrededor de su estrella, su movimiento crea zonas de alta presión a cada lado de su paso, algo así como un barco que crea ondas de choque mientras avanza a través del agua. Estas áreas de alta presión puede llegar a ser barreras protectoras alrededor de los sitios de formación planetaria; las partículas de polvo se encuentran atrapadas dentro de ellas durante millones de años, dando tiempo y espacio para reunirse y crecer, creando así planetesimales y más tarde planetas.

Esta imagen revela no sólo la forma de media luna del polvo atrapado en el borde exterior de la banda oscura, sino también regiones del exceso de polvo en el interior del anillo. Estos estudios pueden dar solución a un problema importante en las teorías de formación de los planetas, que establece que las partículas deben viajar (en Inglés “drift”) hacia la estrella central antes de tener tiempo para crecer hasta el tamaño de  planetesimales (el llamado problema radial “drift”). Que quede el polvo atrapado en los discos puede ser la solución al problema.

Para saber más:

http://www.almaobservatory.org/es/inicio/

cropped-cropped-3-31.jpg

Júpiter visto desde otro punto de vista

Es sorprendente ver al planeta Júpiter desde otro punto de vista, colocamos el planeta de lado con el norte a la izquierda y el sur a la derecha y vemos esta espectacular imagen del planeta más grande del sistema solar:

mancha roja júpiterCréditos de las imágenes: NASA / JPL-Caltech / SwRI / MSSS / Gerald Eichstädt / Seán Doran

Esta imagen procesada por un ciudadano-científico fue adquirida el 10 de julio 2017 con datos del generador de imágenes JunoCam en la nave espacial Juno de la NASA.

Podemos observar la gran mancha de Júpiter en todo su esplendor pero de una forma diferente a la que se ve desde un telescopio. Nuevas imágenes confirman que la gran tormenta, que ha sido observada durante trescientos años, ha ido disminuyendo de tamaño a un ritmo mucho más rápido de año en año. Pero ahora, el ritmo de la contracción parece estar disminuyendo de nuevo, a pesar de que es unos 240 kilómetros más pequeña de lo que era en 2014.

Después de ver la imagen de Júpiter de lado nos podríamos preguntar sí existe el arriba y el abajo en el sistema solar, pues os diría que tal vez sí, depende del punto de referencia que tomemos para ver las cosas. Sí tomamos como referencia el Sol vemos que todos los planetas giran la estrella realizando sus trayectorias (con una pequeña inclinación) sobre un plano, en el llamado plano de la eclíptica, sí se toma ese plano como referencia tendríamos el arriba y el abajo.

planoLa Tierra tiene una inclinación de 23º sobre el plano de la eclíptica, nuestro arriba y abajo está inclinado esos grados.

Otro ejemplo, este más extremo es el planeta gigante Urano, este tiene una inclinación de su eje de rotación casi situado en el plano de su órbita, su inclinación es de 97.7º, es como sí un objeto enorme le hubiera golpeado y lo hubiera dejado de lado. ¿Cual sería su arriba y abajo?… gran pregunta 🙂

inclinacionUranoRecreación realizada por NASA, comparación de los ejes de Urano y la Tierra

Como veis las cosas son según como las miremos, el Universo de todas formas es igual de maravilloso hacia arriba o mirándolo boca abajo 🙂 (aunque esta última es bastante incómoda). Disfrutar de las estrellas 😉

cropped-cropped-3-31.jpg

 

 

 

Fobos y su espectacular transito en Marte

El telescopio espacial Hubble de la NASA ha capturado el transito de la pequeñita luna Fobos en su recorrido orbital alrededor de Marte.

En el transcurso de 22 minutos, Hubble tomó 13 exposiciones, permitiendo a los astrónomos crear un vídeo mostrando el trayecto orbital de Fobos. Créditos: NASA , ESA y Z. Levay ( STScI ), J. Bell (ASU), M. Wolff (Space Science Institute).

Hablaremos un poco de esta diminuta luna y de la otra luna del planeta rojo.  Marte aparte de Fobos tiene otro satélite, Deimos. Estas lunas fueron descubiertas en 1877 por el astrónomo estadounidense Asaph Hall.

lunas marteFobos y Deimos, fotografiados por la sonda Mars Reconnaissance Orbiter (MRO), son pequeñas lunas, de forma irregular. Créditos: NASA, MRO.

Fobos mide unos 22 km de diámetro, y orbita Marte a una distancia de 9.234,42 kilómetros cuando está en el perigeo (más cerca de Marte) y 9.517,58 kilómetros cuando está más alejado (apoapsis). A esta distancia, Fobos está por debajo de la altitud sincrónica, lo que significa que tarda sólo 7 horas en orbitar Marte.

Fobos está muy cerca del planeta rojo con lo que está muy afectado por las fuerzas de marea, con lo que poco a poco se está rompiendo. Se pueden ver esas grietas en la superficie del satélite.

FobosImagen: Las ranuras de la luna Fobos, producidas por las fuerzas de marea (la atracción gravitatoria mutua del planeta y la luna). Créditos: NASA / JPL-Caltech / Universidad de Arizona.

Dentro de 30 a 50 millones de años se romperá a trocitos creando un pequeño anillo alrededor del planeta, posiblemente se podría observar con telescopios desde la Tierra (sí es que queda alguien en la Tierra para esas fechas…) y también sería una vista impresionante para los posibles habitantes del planeta Marte sí por fin nos decidimos a viajar y vivir en otros planetas.

anillo marte

Deimos mide alrededor de 12 km  y orbita el planeta a una distancia de 23.455,5 kilómetros (perigeo) y 23.470,9 kilómetros (apoapsis). Tiene un período orbital más largo, tarda 1,26 días en completar una rotación completa alrededor del planeta.

Los científicos creen que estos dos satélites son asteroides que fueron capturados por la gravedad del planeta. Otra posibilidad es que las dos lunas se formaran a partir de material que quedó sin acretar tras la formación del planeta Marte. Sin embargo, si esto fuera cierto, sus composiciones serían similares a la de Marte, más que similar a la de los asteroides. Una tercera posibilidad es que un cuerpo impactó en la superficie de Marte, expulsando materia al espacio y los restos crearon esas dos lunas, de forma similar a como se cree que se formó la Luna de la Tierra.

cropped-cropped-3-31.jpg

Siete exoplanetas del tamaño de la Tierra orbitan la misma estrella.

Siete exoplanetas del tamaño de la Tierra orbitan una pequeña estrella, según se ha descubierto en un estudio de NASA. Los exoplanetas orbitan la pequeña estrella TRAPPIST-1, que se encuentra a tan sólo 39 años luz de la Tierra. Se trata de una estrella enana ultrafría que es sólo un poco más grande que el planeta Júpiter y alrededor de 2.000 veces más débil que nuestra estrella, el Sol.

siete-planetasDiagrama de las órbitas de los mundos TRAPPIST-1, en comparación con los satélites galileanos de Júpiter, Mercurio, Venus y la Tierra. Crédito: ESO / S. Furtak 

Estos siete mundos  son todos más o menos del tamaño de la Tierra. El más pequeño es un 75 por ciento más masivo que la Tierra, mientras que el más grande es sólo un 10 por ciento más pesados que nuestro planeta. Los siete mundos ocupan órbitas cercanas, situada más cerca de TRAPPIST-1 que el planeta Mercurio lo hace del sol. Los periodos orbitales de los seis mundos más cercanos van de 1,5 días a 12,4 días para el planeta más exterior. Los datos recogidos por los distintos telescopios sugieren que los seis planetas interiores son rocosos, como la Tierra.

TRAPENSE-1 es tan fría que su zona de habitabilidad (zona donde podría existir agua líquida) está bastante cerca de la estrella. Modelos realizados por el equipo descubridor de este sistema sugiere que tres de los siete planetas (E, F y G) se encuentran en la zona habitable. Aunque aun hacen falta muchos datos para saber sí podrían albergar vida.
Características de las siete trapenses 1-mundos, en comparación con los planetas rocosos de nuestro sistema solar.
Características de las siete planetas, en comparación con los planetas rocosos de nuestro sistema solar. Crédito: NASA / JPL-Caltech
Para saber más:
cropped-cropped-3-31.jpg

TESS: el futuro de la búsqueda de exoplanetas cercanos a la Tierra

El futuro telescopio espacial TESS (Transiting Exoplanet Survey Satellite) es una misión de la NASA y el MIT para la búsqueda de exoplanetas. Después de su lanzamiento en el próximo año 2017, TESS utilizará cuatro cámaras para explorar todo el cielo. La misión estudiará más de 500.000 estrellas, buscando variaciones en su brillo que indiquen el transito de un planeta. Se prevé que TESS encuentre más de 3.000 candidatos a exoplanetas, que van desde gigantes gaseosos hasta pequeños planetas rocosos. Se espera que alrededor de 500 de estos planetas sean similares al tamaño de la Tierra. Las estrellas monitoreadas por TESS serán entre 30 a 100 veces más brillantes que las observadas por Kepler, haciendo observaciones de seguimiento mucho más fácil.

Utilizando los datos de TESS, y de misiones como el Telescopio Espacial James Webb podremos determinar las características específicas de estos planetas como mediciones refinadas de las masas planetarias, tamaños, densidades y propiedades de la atmósfera, incluyendo si podrían soportar la vida.

El legado de TESS será un catálogo de las estrellas más cercanas y brillantes con exoplanetas en tránsito, que comprenderán los objetivos más favorables para investigaciones detalladas en las próximas décadas.

prediccion-tess

Figura: Los tamaños y períodos orbitales de los planetas con estrellas anfitrionas más brillantes que J = 10. Izquierda: Planetas descubiertos actualmente, incluyendo los de las misiones Kepler y CoRoT así como estudios basados en telescopios desde tierra. Derecha: población simulada de detecciones de exoplanetas por el futuro telescopio espacial TESS.

La misión TESS lanza un concurso para todas las edades y niveles de destreza (menos los menores de 18 años que deben tener el permiso de un padre o tutor legal para poder participar). Se pide un dibujo o bosquejo sobre exoplanetas. Las propuestas ganadoras volarán a bordo de la nave espacial TESS, mientras busca nuevos mundos fuera de nuestro sistema solar. Para descargar los folletos pulsa aquí.

tess-concurso

La fecha límite es el 1 de marzo de 2017, o cuando se alcance la capacidad máxima de la unidad de carga para llevar las presentaciones al espacio.

Para saber más:

Página web de TESS (https://tess.gsfc.nasa.gov/). 

cropped-3-3.jpg

Distancias interplanetarias: La Unidad astronómica

La unidad de distancia en el Sistema Solar es la denominada Unidad Astronómica (UA), se trata de la distancia promedio desde la Tierra al Sol, esta es equivalente a:

149.597.870 km 

La distancia entra la Tierra y  el Sol toma entonces el valor de 1 UAUnidad astronómica

En Unidades astronómicas la distancia de los planetas al Sol es la siguiente:

Mercurio 0,387; Venus 0,723; Tierra 1,00; Marte 1,524; Júpiter 5,203; Saturno 9,539; Urano 19,192 y Neptuno 30,058.

Sí los colocamos sobre una regla podemos ver a escala como están de lejos unos de otros:Regla del sistema solarRegla del Sistema Solar, pulsar sobre la imagen para apreciar los detalles.

distance planetsDistancia en UA de los planetas, los asteroides y la estrella más cercana. Dibujo no a escala.

A la luz, que su velocidad es de 300.000 km/s, le cuesta 499 segundos recorrer una unidad astronómica (8.3 minutos), de modo que nosotros desde la Tierra, vemos el Sol tal como en realidad se mostraba 8.3 minutos antes.

La distancia de una unidad astronómica nos puede parecer enorme, pero es insignificante en comparación con un año luz. Un año luz posee 63.240 unidades astronómicas.

telescopios y accesorios astronómicos

Para saber más:

Resolución de la IAU sobre la Unidad astronómica.

Cinco planetas en el cielo

En lo que queda de mes de enero y en el mes de febrero podremos apreciar unas horas antes del amanecer a los planetas más importantes visibles desde la Tierra: Júpiter, Saturno, Marte, Venus y Mercurio. Es una buena ocasión para que de una sola vez podamos observar 5 planetas en el plano de la eclíptica.

alineación planetariaLos 5 planetas en el cielo, pulsar sobre la imagen para ver los detalles.

Hay que esperar hasta las 6:30 para que podamos tener a 4  de estos planetas ya visibles, a partir de las 7:00 podremos apreciar a Mercurio. La Luna también entrará en juego en esa línea de planetas, lo hará a partir del día 27 de enero y hasta el 6 de febrero, haciendo un curioso baile día tras día entre esos planetas: (hora de las imágenes las 7:00 am, pulsar sobre las imágenes para apreciar los detalles)

28luna
27 de febrero, la Luna y la alineación planetaria

282luna 28 de febrero, la Luna junto a Júpiter

1febreroluna
1 de febrero, la Luna junto a Marte
3febreoluna
3 de febrero la Luna junto a Saturno
6 febreoluna
6 de febrero la Luna junto a Mercurio y Venus

Hay que madrugar para verlos a todos juntos pero es una gran ocasión para observar los planetas y la Luna muy cerca aparentemente unos de otros.

cropped-universo_blog.jpg

Génesis planetarias

ESOcast 69 presentó en 2014 el resultado de las últimas observaciones de ALMA, que revelaron extraordinarios detalles que nunca se habían visto antes en el disco de formación planetaria alrededor de la estrella HL Tauri. En el siguiente vídeo tenemos muy bien explicado como fue este descubrimiento y sus maravillosas implicaciones.

Crédito: ESO

Esta imagen revolucionaria es el resultado de las primeras observaciones que utilizó ALMA, con sus antena en una configuración lo más amplia posible. Como resultado de ello, se obtuvo en 2014 la imagen más nítida jamás registrada en  longitudes de onda submilimétricas.

cropped-universo_blog.jpg

s.