Archivo de la etiqueta: meteoroide

¿Qué son los meteoritos?

A lo largo de la historia de la humanidad ha habido miles de impactos de asteroides y cometas, produciendo impresionantes cráteres, alguno de estos cráteres aún perduran en la actualidad otros han desaparecido por la erosión, la atmósfera juega un papel importante para borrar las huellas de estos objetos y para evitar que muchos alcancen el suelo, podemos ver en otros planetas sin atmósfera o con una atmósfera muy ligera como están poblados de cráteres como es el caso de mercurio o del planeta Marte.

    Pero en el la Tierra podemos ver algún cráter, por ejemplo el cráter Barrenguer de Arizona (EEUU), ocasionado por un meteorito hace unos 50.000 años, meteorito de unos 50 m de largo y que con una velocidad estimada de impacto de 12 km/s provocó un enorme cráter de 1,2 km de diámetro y 170 m de profundidad. Otros asteroides y cometas también fueron la causa de la extinción de los dinosaurios del cretácico terciario debido a la caída de dos trozos de cometa en diversos puntos de la Tierra que provocaron un cambio climático y la consiguiente extinción paulatina de los dinosaurios.

Captura

Teorías recientes sobre la aparición de la vida en la Tierra dicen que pudo venir del espacio, es lo que se llama la teoría de la Panspermia, en las etapas de formación de la Tierra hubo un gran bombardeo de meteoritos y las colisiones en el Sistema Solar eran continuas, pudo ser que meteoritos impactaran en planetas como Marte y pudieran arrancarle material que vagara errante por el sistema solar hasta impactar en la Tierra, en esas épocas, y según estudios recientes, en Marte había océanos y quizá vida microscópica, puede que seres microscópicos provenientes de Marte llegaran a la Tierra en forma de esporas y cultivaran la Tierra en la “sopa primordial”, con lo que los marcianos seriamos nosotros…(como dice el profesor Fernando Ballesteros en su libro “Astrobiología, un  puente entre el Big Bang y la vida”), bueno son teorías pero lo cierto es que esto explicaría la aparición tan temprana de la vida en la Tierra, además a la Tierra ya han llegado meteoritos procedentes de Marte e incluso de la Luna con lo que no sería del todo descabellada  esta teoría.

    Veamos a continuación de que están compuestos los meteoritos recogidos en la Tierra ya sea tras un impacto o tras ser recogidos e identificados como meteoritos. Los podemos dividir básicamente en rocosos y metálicos, pero la clasificación es mucho más larga y compleja, veremos los más significativos según su abundancia de caída en la Tierra.

Básicamente podemos decir que pueden ser metálicos, acondritas o contritas, los de tipo de condrita son los más comunes son el 86% de los recogidos en Tierra, les siguen las acondritas que sería el 8% y el resto serian de tipo metálico. Pero hay la clasificación de Bischoff del año 2001 los  divide en dos tipos “diferenciados” y “no diferenciados” según hayan sufrido o no procesos de fusión.

Captura
Clasificación resumida de los meteoritos según Bischoff-2001, a, b

Veamos los tipos de meteoritos:

Meteoritos no diferenciados.

  • Condritas: son los más abundante, son de tipo no diferenciado porque no han sufrido fusión tras su formación por acreción hace unos 4550 millones de años y tiene muchas características del primer material de la nube protoplanetaria de formación del sistema solar aunque con algunas variaciones por metamorfismos y variaciones acuosas, sin embargo tienen una característica que no ha variado mucho, los condrulos. Los condrulos son esferas de tamaño muy pequeño, por lo general menor de un milímetro, que rellenan hasta el 70% del meteorito, provienen de la nube primordial y por acreción se formaron en el meteorito, tienen esa forma esférica o de gota pues es la forma que adopta en ingravidez un material fluido, y además se considera que estos condrulos eran el material más abundante en la nube primordial de formación del sistema solar. Estos condrulos se ven mucho más en las Condritas carbonaceas (6% de caídas en Tierra), que son las de procedencia más primitiva y se clasifican en otros tipos según su grado de oxidación, otro tipo de condrita es la condrita ordinaria que como bien dice su nombre es el tipo más común de meteorito recogido en Tierra, suele ser el 80%, por ultimo otro tipo importante es la condrita enstatita (2% de caídas en Tierra), es un material más alterado, con formas más metálicas.
Captura
 Condrita, pueden observarse en su interior los condrulos (esferitas en color blanco)-Foto NASA.

 Meteoritos diferenciados.

Este tipo de meteoritos han sufrido muchos cambios y fueron los que acrecionaron primero en la nube protoplanetaria, suelen ser de origen asteroidal. Dentro de este tipo tenemos los siguientes meteoritos:

Acondritas: No presentan formación de condrulos en su interior, debido a procesos de calentamiento que han provocado que los condrulos se fusionaran, estos se dividen en dos clases según su contenido en calcio, con lo que tendremos acondritos ricos en calcio o pobres en calcio. Este tipo de meteorito es parecido a una roca ígnea terrestre, osease volcánica. Como curiosidad los meteoritos de origen marciano (Lucky) y los de origen lunar (lunalitos) son también de tipo acondrita, estos últimos tipos de meteoritos son muy difíciles de encontrar, los marcianos por ejemplo se les denomina lucky (suerte) porque hay muy pocos, la mayoría se encuentran en desiertos o en la Antártida que son zonas de buena conservación y poca erosión. Su origen es el impacto de algún asteroide en su superficie y los restos de material que lograron salir del planeta llegaron a impactar, tras miles de años, en nuestro planeta, realmente estos tipos de meteoritos son muy raros de encontrar.

Captura
Acondrita-Foto NASA

                                             

Metálicos: presentan abundancia de Hierro y Níquel, el impacto entre asteroides es su origen más común. Estos se clasifican a su vez en otros subgrupos en función de su formar estructural (Hexaedritas y Octaedritas) y su composición química (magmáticas y no magmáticas).

Captura

Sideritos: Están compuestos de un cincuenta por ciento de metal y la otra mitad de silicatos, también se les denomina metalorocosos. Se clasifican en otros subgrupos según las variaciones en esa composición inicial, estos son lospalasitos (formados por olivinio) y los mesosideritos (formados por feldespatos y piroxenos).

Captura

Clasificación moderna de meteoritos:

Actualmente hay una clasificación mucho más completa de meteoritos, son tres clasificaciones muy diferentes pero complementarias entre sí, se basan en sus cambios debido al choque de impacto (Metamorfismo de choque), en sus variaciones por meteorización y a su composición y procedencia:

Metamorfismo de choque; esta clasificación tiene en cuenta la fuerza del impacto del meteorito con la superficie de la Tierra, clasificándolos según la intensidad del choque en Gigapascales. Dando una Clasificación de índices Sn,

Donde n=1,2,3,4,5 y 6 , el índice 1 indicaría que no hubo choque y seria tipo Condrita que es el más común, el nivel 2 sería un choque débil y el nivel 6 sería el choque más fuerte (unos 80Gps). Todos estos niveles en los que clasificamos los meteoritos tendrían también a su vez una clasificación para cada nivel Sn de características ópticas (colores que se observan al verse con luz polarizada) y de composición interna.

Clasificación por meteorización, está basada en los cambios que ha sufrido el meteorito por la acción del clima. El viento, la lluvia, el agua del mar, es decir los agentes meteorizantes varían las características físicas del meteorito, y varían su nivel de oxidación, estos meteoritos se les clasifica con el índice Wn, donde n=0,1,2,3,4,5 y 6 según el nivel de oxidación del meteorito, por ejemplo en nivel 0 corresponde a un estado en el que aún no ha habido meteorización ya que el meteorito ha sido recogido inmediatamente del impacto, un nivel 3 correspondería a un meteorito de fuerte oxidación y uno de nivel 6 los silicatos han sido sustituidos por arcillas y óxidos.

Clasificación por composición y procedencia. Correspondería completamente a la clasificación que ya he desarrollado en los puntos anteriores, es decir a la clasificación de A. Bischoff (2001), osease meteoritos diferenciados (o fundidos) y meteoritos no diferenciados (primitivos o no fundidos).

Otros meteoritos: Hay una serie de materiales que son producidos a causa de un impacto de un meteorito, como por ejemplo las Impactitas, que no es más que el material eyectado de la corteza terrestre por la fuerza del impacto del meteorito, este material se funde y enfría rápidamente, presentan entonces un aspecto caótico mezcla del meteorito con muchas rocas. Dentro de este grupo están las famosas tectitas, de formas vidriosas muy oscuras pero sin rastro del meteorito.

Captura
Tectitas

                                                                

Para saber más: 

-El Geólogo planetario. Jesús Martínez Frías
Centro de Astrobiología (CSIC/INTA),  asociado al NASA Astrobiology Institute http://digital.csic.es/bitstream/10261/36180/3/P%C3%A1ginas%20de%20profgeologo.pdf

El Origen del Sistema Solar-Josep María Trigo i Rodríguez, Editorial Complutense.

Astrobiología, Un puente entre el Big Bang y la Vida-Editorial Akal.

Anuncios

Observatorio virtual: Observar estrellas fugaces

Tenemos un observatorio virtual desde el que realizamos visitas y observaciones narradas y con imágenes, son una serie de post tratando de trasladar las emociones que se viven cuando se visita un observatorio de verdad.

Ya hemos hecho varias desde nuestro observatorio como las siguientes:

En el de hoy realizaremos, tras el atardecer y la aparición de las estrellas, una observación de estrellas fugaces.

¿Qué es una estrella fugaz?

Las estrellas fugaces son meteoroides que chocan y son interceptados contra la atmósfera de la Tierra. Un meteoroide es un cuerpo menor cuyo tamaño está comprendido entre 100 mm y 50 m, esta definición puede variar pero es la utilizada por la Royal Astronomical Society. Los meteoroides como el polvo interplanetario, procede de los desperdicios de la formación del sistema solar, de las colisiones de cuerpos, y de eyecciones de cometas.  Suelen ser de tipo condrito (rocoso), acondrito (parecido a rocas ígneas) o metálico.

Estos se mueven en órbitas alrededor del sol, y como se ha dicho en su mayoría provienen de eyecciones de cometas o de colisiones de cuerpos celestes, estos y estos se hayan concentrados en el plano de la eclíptica, disminuyendo su número conforme nos acercamos al sol y conforme nos acercamos a Júpiter, ya que ambos astros capturan gravitacionalmente la mayoría de los meteoroides.

Photo by Felipe Helfstein on Pexels.com

Los meteoroides asociados a cometas o asteroides se convierten en meteoros cuando interceptan la Tierra, un meteoro (estrella fugaz) es el fenómeno luminoso que se puede observar desde la Tierra cuando el meteoroide choca contra la atmosfera terrestre y por fricción con esta se ponen incandescentes, popularmente se les denomina estrellas fugaces. Esta interacción ocurre en la Termosfera a una altura entre 80 y 120 km, la velocidad de entrada varía desde los 11 km/s para los meteoros más lentos hasta los 80 km/s para los más rápidos. Veamos porque reproduce esa incandescencia del meteoroide al interaccionar con la atmósfera; las partículas atmosféricas chocan contra la superficie del meteoroide aumentando su temperatura, este proceso aumenta conforme se disminuye la altura, cuando el meteoroide alcanza una temperatura determinada comienza el proceso de ablación.

Para observar estrellas fugaces y disfrutar al máximo hay que tener mucha paciencia, a veces ocurre que no hay grandes tormentas de meteoros y se observan muy pocas estrellas fugaces. Pero siempre hay horas y momentos en los que podemos observar alguna aunque no haya mucha actividad.

Captura

           Imagen radiante de las Perseidas de Agosto, imagen de space.com

Recuerdo máximos espectaculares de perseidas (120 por hora) y sobretodo de Leónidas (más de 2000 por hora), esas lluvias llenan el cielo de estrellas de colores, es como una noche de fuegos artificiales. Es una experiencia increíble, este espectaculo natural nos descubre lo fabuloso que es el Universo, y las maravillas que tenemos con tan solo alzar la vista y mirar hacia las estrellas.

Por ejemplo para las famosas Perseidas es importante observar las ultimas horas de la noche que es cuando hay más actividad aunque podrían ocurrir sorpresas y ocurrir antes, cuando veamos el máximo el espectaculo es maravilloso. Decenas de meteoros por hora, algunos minutos incluso dos a la vez…. pero hay que estar muy atentos pues aunque suelen aparecer muchos brillantes y con estela, la mayoría suelen ser débiles, con lo que lo ideal es desplazarse a lugares alejados de la contaminación lumínica. Para encontrar Perseo hay que mirar hacia el NE, buscaremos una constelación en forma de W que se llama Casiopea, pues justo debajo está perseo y el radiante de las perseidas, toda estrella fugas que veamos partir de esa zona será una Perseida.

Pero no todos los meses son así, hay unas lluvias las llamadas lluvias menores que radian pocos meteroides. Por eso digo lo de la paciencia, esperar horas y horas a ver una estrella fugaz siempre tiene su recompensa.

¿Cuando observar? La mejor hora es a partir de las 3 AM y hasta el amanecer, en ese momento la Tierra se encuentra de frente con los meteoides y captura muchos más. Sí estamos observando alguna lluvia de estrellas en particular hay que observar siempre en dirección opuesta al lugar donde parecen partir los meteoros (radiante), ya que si miramos todo el tiempo a ese punto tan solo veremos meteoros puntuales o de trazo muy corto. Sí el radiante está muy alto (cerca del cenit) observaremos meteoros por todas partes.

Para observar estrellas fugaces no hace falta telescopio, a simple vista se puede hacer, tan solo hace falta colocarse cómodo, abrigarse y elegir un lugar alejado de la contaminación lumínica.

Además de disfrutar con su contemplación se puede realizar ciencia a simple vista. Por ejemplo apuntando sus colores (sabremos su composición), su velocidad aproximada, su brillo (en comparación con otras estrellas), sí deja estela, su altura, etc. Todos estos datos nos pueden decir mucho del meteoroide y de su procedencia. Tenéis más información sobre esto y como colaborar con vuestras observaciones en la Sociedad de Observadores de Meteoros y Cometas de España (SOMYCE).

No dejéis de observar el cielo, ya que estos pequeños trocitos que vemos iluminados en el cielo, son restos de cometas, asteroides o restos de algún planeta, que tras miles de años interaccionan con la Tierra y los podemos observar,  por tanto cuando vemos una estrella fugaz estamos observando un momento fugaz de la historia de nuestro Sistema Solar.

Para saber más:

¿Qué es una estrella fugaz?

Anuncios

Perseidas 2020: las estrellas fugaces más espectaculares del verano

La lluvia de estrellas fugaces más espectacular y más observada de la historia son las famosas Perseidas, una lluvia muy importante por su alta actividad y espectacularidad que podemos observar desde el 17 de julio hasta el 25 de agosto.

Las estrellas fugaces parten desde un punto de la constelación de  Perseo (es lo que se denomina el punto radiante de la lluvia, sí lanzamos hacia atrás el trazo parecen provenir de un punto en esa constelación).

Tienen una alta actividad entre el 8 al 14 de agosto, siendo la noche de más alta actividad en 2020 la noche del 11/12 de agosto.

radiante

Posición del punto radiante de las Perseidas sobre la constelación de Perseo en función de la fecha de julio a agosto. Fuente IMO


Esta lluvia tiene una Tasa Horaria Zenital (número de meteoros por hora en la hora del máximo) de 100-150 meteoros por hora en condiciones ideales.

Photo by pixe Lm on Pexels.com

Si las condiciones no son ideales (nubosidad, contaminación lumínica, presencia de la Luna o baja altura del radiante) veremos menos meteoros. La presencia de bólidos (meteoros muy brillantes) es muy importante, no solo en las noches del máximo, sino también al comienzo y final del periodo actividad de la lluvia veraniega.

En 2020 el máximo será la noche del 11/12 de agosto con la presencia de la luna a partir de las 2 AM en fase cuarto menguante, con lo que la observación se verá un poco dificultada por la presencia de la Luna pero podremos ver actividad al inicio de la noche y a altas horas de la madrugada, con lo que habrá que trasnochar. Normalmente la máxima actividad de la lluvia se observa bien entrada la noche,  las mejores horas para ver muchos meteoros es desde las 3h de la madrugada hasta el amanecer. Pero desde el inicio de la noche ya podremos observar estrellas fugaces, con lo que tendremos que buscar lugares alejados de la contaminación lumínica para poder ver más estrellas y un muchas más estrellas fugaces.

radiante perseidas
Punto radiante de las perseidas la noche del máximo (11/12 agosto)

¿De dónde provienen las Perseidas? De un cometa llamado 109P/Swift-Tuttle, se trata de un enorme cometa con un núcleo de 26 Km de diámetro que nos visita cada 133 años. Cuando la Tierra intercepta los restos que dejó este cometa en su órbita aparecen las fantásticas perseidas.

Un poco de historia; Las Perseidas: Lagrimas de San Lorenzo

En la edad media se asociaba a las Perseidas a la festividad de San Lorenzo (10 de agosto), ya que antiguamente el máximo de actividad era sobre esa fecha. Se dice que son las lagrimas de este santo cuando fue quemado en la hoguera. El dato más antiguo de esta lluvia es del año  36 d.c en China, los astrónomos chinos observaron una alta actividad de la lluvia y registraron los datos para la posteridad.

Ahora no hay más que ponerse cómodos, buscar lugares alejados de las terribles luces de las ciudades y que comience el espectaculo. Las Perseidas son una lluvia de estrellas fugaces que iluminan las noches del verano del hemisferio norte y que nunca dejan indiferente a ningún observador de las maravillas del firmamento.

Anuncios

Más información sobre estrellas fugaces:

(1) Benítez Sánchez, O. Guía de Observaciones Visuales. Esta guía explica en detalle la metodología de observación visual.

(2) Benítez Sánchez, O., Fraile Algeciras, E., Ocaña González, F. Observaciónde Meteoros. Una introducción al fenómeno meteórico y su observación científica con motivo del Año Internacional de la Astronomía (AIA-IYA 2009)SOMYCE 2009. Excelente introducción a los diferentes métodos de observación meteórica: visual, video-fotográfico, observaciones radio y telescópicas. Publicación de descarga gra­tui­ta.

Programas informáticos:

[1] MetRed, por Javier Sánchez. Permite la reducción rápida de las observaciones de conteo y alta actividad. La salida de datos corresponde con el formulario de envío de IMO. Descarga por ftp. Descarga desde la página de SOMYCE

[2] MetShow, por Peter Zimnikoval. Programa recomendado para el cálculo de la MALE, la THZ o cálculo de radiantes.

[3] Startrails. Achim Scha­ller. Permite crear timelapses. Programa recomendado para superponer imágenes

Enlaces extraídos de la web de la Sociedad de Observadores de Meteoros y cometas de España (SOMYCE)

Detectadas dos nuevas lluvias de meteoros

Las redes CAMS, redes de videovigilancia del cielo nocturno, han detectado dos nuevas lluvias de meteoros desde el hemisferio sur entre el 15 al 17 de mayo. mediante triangulación, calculan la dirección desde la cual los meoroides se acercan a la Tierra. 

La figura anterior muestra las direcciones de aproximación en esos días, podéis ver los mapas interactivos completos en esta dirección:

http://cams.seti.org/FDL/

Las nuevas lluvias de meteoros son las manchas más gruesas de la parte inferior del gráfico, grupos de meteoriodes que se aproximan desde la misma dirección. A las dos nuevas lluvias se les agregó el número 1034 y 1035. Ambas lluvias son causadas por restos de cometas desconocidos de largo período. 

¿Qué es una estrella fugaz?

Un meteoroide es un cuerpo menor cuyo tamaño está comprendido entre 100 mm y 50 m, esta definición puede variar pero es la utilizada por la Royal Astronomical Society. Los meteoroides como el polvo interplanetario, procede de los desperdicios de la formación del sistema solar, de las colisiones de cuerpos, y de eyecciones de cometas.  Suelen ser de tipo condrito (rocoso), acondrito (parecido a rocas ígneas) o metálico.

Estos se mueven en órbitas alrededor del sol, y como se ha dicho en su mayoría provienen de eyecciones de cometas o de colisiones de cuerpos celestes, estos y estos se hayan concentrados en el plano de la eclíptica, disminuyendo su número conforme nos acercamos al sol y conforme nos acercamos a Júpiter, ya que ambos astros capturan gravitacionalmente la mayoría de los meteoroides.

Captura

Los meteoroides asociados a cometas o asteroides se convierten en meteoros cuando interceptan la Tierra, un meteoro (estrella fugaz) es el fenómeno luminoso que se puede observar desde la Tierra cuando el meteoroide choca contra la atmosfera terrestre y por fricción con esta se ponen incandescentes, popularmente se les denomina estrellas fugaces. Esta interacción ocurre en la Termosfera a una altura entre 80 y 120 km, la velocidad de entrada varía desde los 11 km/s para los meteoros más lentos hasta los 80 km/s para los más rápidos. Veamos porque reproduce esa incandescencia del meteoroide al interaccionar con la atmósfera; las partículas atmosféricas chocan contra la superficie del meteoroide aumentando su temperatura, este proceso aumenta conforme se disminuye la altura, cuando el meteoroide alcanza una temperatura determinada comienza el proceso de ablación.

Es decir el calor producido por el rozamiento es suficiente para sublimar los átomos y las moléculas del meteoroide, en esta etapa la pérdida de masa es rápida, esta pérdida de masa ocurre de varias formas, la más importante es la separación de átomos y moléculas individuales del meteoroide, aunque hay otros procesos de pérdida de masa como chispas sólidas expedidas desde la superficie del meteoroide o fragmentos que se separan por la presión. El destello luminoso no es causado por la masa del meteoroide sino por su alta energía cinética, interacciona a una altura de 120 km y pueden llegar hasta los 25 km de altura en su recorrido según sea su tamaño y velocidad, a esa altura final ya han perdido toda su energía y velocidad inicial.  Cuando la mayor parte de la masa se ha consumido, el meteoro deja de verse. En el caso de meteoroides muy pequeños, la ablación es tan fuerte que se evapora todo el material, en los cuerpos más grandes al disminuir su velocidad queda una masa residual que termina por alcanzar la superficie terrestre en forma de micrometeoritos tras varios minutos de vuelos sin luz.

Los meteoros están asociados a cometas y asteroides, estos cometas y asteroides siguen órbitas alrededor del Sol, entonces los restos de estos cuerpos (los Meteoroides) estarán a lo largo de la misma órbita que el cuerpo del que ha sido eyectado, por tanto podemos conocer de qué cuerpo menor proviene el meteoro solo con calcular su órbita, así a lo largo del año podemos ver diversas lluvias de meteoros como es el caso de las Perseidas (asociada al cometa 109P/Swift-Tuttle) de Agosto o de las Leónidas (asociada al cometa Tempel-Tuttle) de Noviembre, estas lluvias se presentan en periodos temporales según la época del año, como hemos dicho las perseidas se presentan en agosto, concretamente del 25 de julio hasta el 27 de agosto, con un día de máximo de apariciones de meteoros que se suele presentar la noche del 12 al 13 de agosto, este día es cuando la tierra intercepta una mayor densidad de partículas en su órbita y es cuando se pueden observar más estrellas fugaces.

Al número máximo de meteoros por hora se le denomina THZ y es el número que se observaría si el radiante estuviera en culminación y con una atmosfera estable y limpia, la THZ de las perseidas suele estar en 80 meteoros/hora. Si se produce el paso de su cometa asociado, en los próximos años se verá incrementado el número de meteoros observables pues habrá repoblado su órbita de nuevos meteoroides.

Anuncios

Meteroides, meteoros y meteoritos ¿Qué son?

Un meteoroide es un cuerpo menor cuyo tamaño está comprendido entre 100 mm y 50m, esta definición puede variar pero es el utilizado por la Royal Astronomical Society. Los meteoroides como el polvo interplanetario, proceden de los desperdicios de la formación del Sistema Solar, de las colisiones de cuerpos, y de eyecciones de cometas.  Suelen ser de tipo condrito (rocoso), acondrito (parecido a rocas ígneas) o metálico. Estos se mueven en órbitas alrededor del sol, y como se ha dicho en su mayoría provienen de eyecciones de cometas o de colisiones de cuerpos celestes. Estos se hayan concentrados en el plano de la eclíptica, disminuyendo su número conforme nos acercamos al Sol y conforme nos acercamos a Júpiter, ya que ambos astros capturan gravitacionalmente la mayoría de los meteoroides. Los meteoroides asociados a cometas o asteroides se convierten en meteoros cuando interceptan la Tierra.

meteoritos

    Un meteoro es el fenómeno luminoso que se produce cuando el meteoroide choca contra la atmósfera terrestre y por fricción con esta se pone incandescente, popularmente se les denomina estrellas fugaces.

     Esta interacción ocurre en la Termosfera a una altura entre 80 y 120km, la velocidad de entrada varía desde los 11 km/s para los meteoros más lentos hasta los 80km/s para los más rápidos. Las partículas atmosféricas chocan contra la superficie del meteoroide aumentando su temperatura, este proceso aumenta conforme se disminuye la altura, cuando el meteoroide alcanza una determinada temperatura comienza el proceso de ablación. Es decir el calor producido por el rozamiento es suficiente para sublimar los átomos y las moléculas del meteoroide. En esta etapa la pérdida de masa es rápida, esta pérdida de masa ocurre de varias formas, la más importante es la separación de átomos y moléculas individuales del meteoroide.

Captura

Aunque hay otros procesos de pérdida de masa como chispas sólidas expedidas desde la superficie del meteoroide o fragmentos que se separan por la presión. El destello luminoso no es causado por la masa del meteoroide sino por su alta energía cinética. Interacciona a una altura de 120 km y pueden llegar en su recorrido hasta los 25 km del nivel del suelo según sea su tamaño y velocidad, a esa altura final ya han perdido toda su energía y velocidad inicial.  Cuando la mayor parte de la masa se ha consumido, el meteoro deja de verse. En el caso de meteoroides muy pequeños, la ablación es tan fuerte que se evapora todo el material. En los cuerpos más grandes al disminuir su velocidad queda una masa residual que termina por alcanzar la superficie terrestre en forma de micrometeoritos tras varios minutos de vuelo sin luz.

    Los meteoros están asociados a cometas y asteroides, estos cometas y asteroides siguen órbitas alrededor del sol, entonces los restos de estos cuerpos (los Meteoroides) estarán a lo largo de la misma órbita que el cuerpo del que ha sido eyectado. Por tanto podemos conocer de qué cuerpo menor proviene el meteoro sólo con determinar su órbita.

     Así a lo largo del año podemos ver diversas lluvias de meteoros como es el caso de las Perseidas de Agosto (asociada al cometa 109P/Swift-Tuttle) o de las Leónidas de Noviembre (asociada al cometa Tempel-Tuttle). Estas lluvias se presentan en periodos temporales según la época del año, como hemos dicho las perseidas se presentan en agosto, concretamente del 25 de julio hasta el 27 de agosto, con un día de máximo de apariciones de meteoros que se suele presentarse la noche del 12 al 13 de agosto. Este día es cuando la tierra intercepta una mayor densidad de partículas en su órbita y es cuando se pueden observar más estrellas fugaces. Al número máximo de meteoros por hora se le denomina THZ (Tasa cenital máxima) cuyo valor es el número de meteoros que se observarían si el radiante estuviera en culminación y con una atmósfera estable y limpia. La THZ de las perseidas suele estar en 80 meteoros/hora. Si se produce el paso de su cometa asociado, en los siguientes años se verá incrementado el número de meteoros observables pues habrá repoblado su órbita de nuevos meteoroides.

Captura                          THZ de las Leónidas de 1998-fuente NASA

Un fenómeno muy interesante son las tormentas de meteoros, normalmente en el tubo meteórico (se denomina tubo meteorico a la órbita donde están distribuidos los meteoroides) las partículas meteóricas se distribuyen en filamentos, lo que provoca que existan diversas zonas de más densidad que otras que cada cierto tiempo  la Tierra llega a interceptar. Cuando esto ocurre se produce una auténtica tormenta de miles de estrellas fugaces, como fue el caso de las Leónidas de 1998, cuando en un minuto se podían contar hasta 60 meteoros, lo que daba una THZ de unos 3600 meteoros por hora.

Captura

Cuando estas tormentas ocurren provocan  mucho entusiasmo a los aficionados de las astronomía por el espectáculo tan bello que supone su observación, pero para las agencias espaciales a veces puede ser un problema. La Nasa en varias ocasiones ha tenido que corregir la órbita de algún satélite para que intercepte el menor número de estos meteoroides, pues aunque son pequeños su alta velocidad orbital puede provocar daños en los sensores de los satélites artificiales.

    Los meteoroides que pertenecen a un determinado tubo meteórico tienen aproximadamente los mismos elementos orbitales. Todos ellos se mueven siguiendo direcciones paralelas, por tanto podemos definir la dirección de un radiante de una lluvia de meteoros como la tangente a la órbita de los meteoroides en el punto donde la tierra la corta. Entonces cuando diversos meteoros provenientes de la misma orbita interaccionan con la atmosfera parece como si provinieran de un mismo punto en el cielo, es decir si el trazo que dejan en la bóveda celeste lo trasladamos hacia atrás, para varios meteoros, parece como si partieran de un mismo punto.

  Es un fenómeno parecido al que se produce cuando se va circulando por un túnel, con farolas a lo largo del recorrido, y hay una sensación de que todas estas luces parecen venir del final del túnel.  A ese punto de salida de meteoros se le denomina radiante, y se le pone el nombre de la constelación en la que parecen provenir los meteoros. Este radiante varía de posición en la bóveda celeste a lo largo del tiempo debido al movimiento de la Tierra alrededor del Sol.

 Captura

Leónidas de Noviembre- Movimiento del radiante (del 14-11 al 21-11), y trazos de meteoros del día 14 de Noviembre-imagen del autor

    Los meteoros según su tamaño y composición pueden presentar un determinado brillo o color. El brillo se mide por comparación con la magnitud estelar de las estrellas, así pueden tomar valores de magnitud aparente comprendidos entre la 6-7 para los más débiles hasta magnitudes negativas para los más brillantes. Si un meteoro presenta una magnitud a partir -2 se le denomina bólido, y si llega a magnitud de -16 (brillo del Sol) se le llama superbólido. Los meteoros en su paso por la atmósfera producen diversos fenómenos como estelas, fragmentaciones, explosiones, y en algunos casos incluso ruido (sobre todo en bólidos).

De las observaciones de meteoros podemos obtener multitud de informaciones científicas:

-A partir de imágenes CCD se puede obtener el registro de los trazos luminosos que realiza un meteoro. Sí este es observado desde dos lugares diferentes, y sabiendo  la velocidad del meteoro,  se pueden realizar análisis astrométricos de la trayectoria del meteoro entre las estrellas. Con esto obtendríamos, a partir de la velocidad geocéntrica, la órbita que seguía la partícula alrededor del sol.

-Mediante espectroscopía se puede conocer los principales elementos químicos del meteoroide a partir de la luz que desprende en su incandescencia. Calculada la distancia al observador se pueden obtener las abundancias relativas entre los diferentes componentes, con lo que se puede clasificar el meteoroide como condrito, acondrito o metálico.

-De la información orbital extraída del meteoroide se puede analizar la evolución temporal de esa partícula en el sistema solar, y llegar a conocer el cuerpo del que se desprendió.

 Sí el meteoroide es lo suficientemente grande como para alcanzar  la superficie terrestre se le denomina meteorito. A lo largo de la historia de la humanidad ha habido miles de impactos de meteoritos, produciendo impresionantes cráteres. Alguno de estos cráteres aún perduran en la actualidad y otros han desaparecido por la acción de la erosión. La atmósfera juega un papel importante para borrar las huellas de los meteoritos y para evitar que muchos alcancen el suelo. Podemos ver en otros planetas sin atmósfera o con una atmósfera muy ligera como están poblados de cráteres, como es el caso de mercurio o del planeta Marte.

Pero en la Tierra aun podemos ver algunos cráteres, por ejemplo el cráter Barrenguer de Arizona (EEUU), impacto producido hace unos 50.000 años. Se estima que fue producido por un meteorito de unos 50 m de largo y que con una velocidad estimada de impacto de 12 km/s provocó un enorme cráter de 1,2 km de diámetro y 170 m de profundidad.

Captura

Otros meteoritos caídos en la Tierra provocaron grandes extinciones, como es el caso de  los dinosaurios del cretácico terciario que debido a la caída de dos trozos de cometa provocaron un cambio climático y la consiguiente extinción paulatina de los dinosaurios. Teorías recientes sobre la aparición de la vida en la Tierra dicen que pudo venir del espacio, es lo que se llama la teoría de la Panspermia. En las etapas de formación de la Tierra hubo un gran bombardeo de meteoritos y las colisiones en el sistema solar eran continuas, pudo ser que meteoritos impactaran en planetas como Marte y pudieran arrancarle material que vagara errante por el sistema solar hasta impactar en la Tierra.

En esas épocas, y según estudios recientes[1], en Marte había océanos y quizá vida microscópica, puede que seres microscópicos provenientes de Marte llegaran a la Tierra en forma de esporas y cultivaran la Tierra en la “sopa primordial”. Con lo que como comenta el autor Fernando Ballesteros en su libro “Astrobiología, un puente entre el Big Bang y la vida” los marcianos seriamos nosotros…. Realmente son teorías pero lo cierto es que esto explicaría la aparición tan temprana de la vida en la Tierra.

Captura

 Un vasto océano cubrió probablemente un tercio de la superficie de Marte hace unos 3.500 millones de años, cortesía NASA.

[1] Huellas de Océanos en Marte: El hallazgo se ha hecho gracias al análisis de una serie de imágenes tomadas por el Experimento Científico de Imágenes de Alta Resolución (HiRise) del Orbitador de Reconocimiento de Marte (MRO).El director de la investigación científica del programa de exploración a Marte de la NASA, Michael Meyer hizo el anuncio junto con el profesor Alfred McEwen de la Universidad de Arizona, en 2006.

Para saber más:

SOMYCE: Sociedad de Observadores de Meteoros y Cometas de España.

cropped-captura24.jpg