Archivo de la categoría: astronomía

Las diferentes capas de la atmósfera de la Tierra

Nuestro planeta tiene una importante atmósfera que nos protege del terrible espacio exterior y que hace posible la vida en la Tierra. Es una enorme capa de gases que tiene una composición de 78% Nitrógeno, 21% oxígeno y otros gases como Argón, Dióxido de carbono, metano, ozono y vapor de agua. Las principales capas son:  

  • Exosfera: 700 a 10.000 km
  • Termosfera: 80 a 700 km 
  • Mesosfera: 50 a 80 km 
  • Estratosfera: 12 a 50 km
  • Troposfera: 0 a 12 km

atmosphere_for_full_export-

Las diferentes capas de la atmósfera terrestre. Créditos: NASA

La temperatura media de la Tierra es de 15ºC, esta temperatura disminuye con la altura hasta que llegamos a la estratosfera que la temperatura cambia pero la presión como es lógico disminuye, así la presión atmosférica, que es mayor a nivel del mar disminuye con la altura. Lo podéis ver en la siguiente tabla, a modo de ejemplo:

Altitud (m)     Temperatura (ºC)    Presión (Hp)

tabla temperatura con altura

Veamos un poco cada capa en detalle:

La troposfera es la capa más baja de nuestra atmósfera. Comenzando a nivel del suelo, se extiende hacia arriba a unos 10 km sobre el nivel del mar. Los seres vivos vivimos en la troposfera. La mayoría de las nubes las podemos encontrar aquí, principalmente porque el 99% del vapor de agua en la atmósfera se encuentra en la troposfera. La presión del aire disminuye y las temperaturas se vuelven más frías a medida que asciende en la troposfera como hemos visto en la tabla anterior.

La siguiente capa superior se llama la estratosfera . La estratosfera se extiende desde la parte superior de la troposfera hasta unos 50 km sobre el suelo. La importante y vital capa de ozono se encuentra dentro de la estratosfera. Las moléculas de ozono en esta capa absorben la luz ultravioleta de alta energía del Sol. A diferencia de la troposfera, la estratosfera en realidad se calienta a medida que asciendes. Esa tendencia de temperaturas crecientes con la altitud significa que el aire en la estratosfera carece de la turbulencia y las corrientes ascendentes de la troposfera que se encuentra debajo. 

Por encima de la estratosfera se encuentra la mesosfera. Se extiende hacia arriba hasta una altura de aproximadamente 85 km sobre nuestro planeta. La mayoría de los meteoros (estrellas fugaces) se desintegran en la mesosfera. A diferencia de la estratosfera, las temperaturas una vez más se vuelven más frías a medida que asciende a través de la mesosfera. La presión del aire en la parte inferior de la capa está muy por debajo del 1% de la presión a nivel del mar y continúa descendiendo a medida que aumenta la altura.

Sobre la mesosfera tenemos la termosfera.  Los rayos X de alta energía y la radiación UV del sol se absorben en la termosfera, elevando su temperatura a cientos o miles de grados.  Muchos satélites orbitan la Tierra dentro de la termosfera. La parte superior de la termosfera se puede encontrar entre 500 y 1.000 km sobre el suelo. Las temperaturas en la termosfera superior pueden oscilar entre aproximadamente 500 °C  y 2,000 °C, pero es tan fina esa capa que allíno notaríamos esa temperatura, tendríamos literalmente frío. También es esta capa es donde se producen las preciosas  auroras polares .

Se considera que la exosfera es la “frontera final” real de la envoltura gaseosa de la Tierra. El “aire” en la exosfera es muy delgado, lo que hace que esta capa sea aún más parecida al espacio que la termosfera.  Diferentes definiciones ubican la cima de la exosfera en algún lugar entre 100,000 km y 190,000 km sobre la superficie de la Tierra. 

Luego tenemos la ionosfera , esta no es una capa distinta como las otras mencionadas anteriormente. En cambio, la ionosfera es una serie de regiones con partes en la mesosfera y en la termosfera donde la radiación de alta energía del Sol ha liberado a los electrones de sus átomos y moléculas. Los átomos y moléculas cargados eléctricamente que se forman de esta manera se llaman iones, que le dan a la ionosfera su nombre y le otorgan a esta región algunas propiedades especiales.

Anuncios

La estrella más caliente conocida cerca del Sol

Para encontrar esta estrella hay que viajar hasta la nebulosa NGC 7822, una maravillosa zona de formación de estrellas en la constelación de Cefeo. Toda esta zona la comprende la región llamada Sharpless 171, y un joven cúmulo de estrellas llamado Berkeley 59.

Todo este impresionante complejo estelar se encuentra a unos 3.300 años luz de distancia de nosotros, el complejo también incluye una de las estrellas más calientes descubiertas cerca del Sol, la llamada: BD + 66 1673.

estrellaImagen de en catálogo Simbad.

Se trata de una binaria eclipsante (una estrella que orbita frente a otra) la estrella principal exhibe una temperatura superficial de casi 45.000 ºC y una luminosidad 100.000 veces la del Sol, es de tipo espectral O9.5V. La estrella es una de las fuentes principales  que iluminan la nebulosa y dar forma a los famosos del complejos llamados pilares de la creación  y las trompas de elefante.

Es una estrella de tipo O por tanto muy calienta, nuestro Sol es de tipo G mucho más fria (6000 ºC superficilaes). Las estrellas las podemos clasificar según su temperatura, es lo que se denomina clasificación de tipo espectral.

Esta clasificación distingue las estrellas de acuerdo a su espectro luminoso y su temperatura superficial. Una medida simple de esta temperatura es el índice de color de la estrella.

estrellas

Pero una estrella de una misma temperatura puede tener tamaños diferentes, por tanto tenemos otra clasificación según su evolución, es lo que se denomina el Diagrama de Hertzsprung-Russell (también llamado diagrama H-R), este muestra el resultado de numerosas observaciones sobre la relación existente entre la magnitud absoluta de una estrella y tipo espectral.

Corazones planetarios y galácticos

Los corazones vuelan el día de los enamorados, parece que sea una invasión muy amorosa, pero esa típica forma de corazón que tanto nos gusta curiosamente también la podemos ver en algunos lugares de la Tierra, en otros planetas o en nebulosas, el azar de esas formas nos evocan bonitos sentimientos y ahora vamos a ver algunos ejemplos.

Empezamos por la Tierra, la agencia espacial europea (ESA) ha capturado, desde el satélite Copernicus Sentinel-2, esta imagen de una isla con una forma muy curiosa, se trata de la isla de Moorea en forma de corazón en el Pacífico Sur.


Imagen de la isla Moorea, Créditos: datos modificados de Copernicus Sentinel (2017), procesados ​​por la ESA. 

Viajamos ahora hacia el planeta rojo, Marte. La nave “Mars Gobal Surveyor” ha captado cráteres en el planeta Marte que nos recuerdan mucho al típico corazón tan usado en la fecha del día de los enamorados, de la amistad o del amor, como estamos en estas fechas que mejor forma que celebrarlo que con estas bellas imágenes:

corazones

Imagen NASA/JPL/Mars Global Surveyor

Marte parece un planeta muy amoroso :).

CbEhTT6UEAAP3IZ

Nos vamos ahora al planeta enano Plutón, donde nos encontramos con el famoso corazón de Plutón, llamado Sputnik Planum, no es más que una vasta extensión de superficie helada unos 3 kilómetros más baja que el resto de terreno circundante.

corazón plutón
Los mapas topográficos de Plutón se han realizado a partir del análisis digital de las imágenes que la sonda New Horizons adquirió en 14 de julio de 2015. El mapa está iluminado artificialmente desde el sur, que es una de las muchas ventajas de trabajar con mapas digitales del terreno. Créditos: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

Y en nuestra galaxia también hay un objeto muy “amoroso”: IC1805 “la nebulosa del corazón”. Se trata de una nebulosa de emisión, es una brillante mezcla de gas interestelar y nubes de polvo a una distancia de 7.500 años luz en el brazo espiral Perseo de nuestra Galaxia. Feliz día de San Valentín.

Nebulosa corazón
Créditos: dpmessier.com

 

¿Impactará contra la Tierra un asteroide el 9 de septiembre?

El 9 de septiembre de 2019 se espera que el asteroide de tipo Apolo llamado 2006 QV 89, que fue descubierto el 29 de agosto de 2006 por Catalina Sky Survey (CSS), se aproxime muy cerca de la Tierra. Pero pese a que en muchos medios se dice que impactará contra nuestro planeta, todavía no se sabe a ciencia cierta a que distancia pasará de la Tierra, podría pasar a miles o millones de kilómetros de nosotros. Se necesitan muchas más observaciones para poder determinar exactamente un dato tan claro y peligroso como es el impacto de un asteroide del tamaño de terreno de juego de un campo de fútbol.
De impactar el objeto es demasiado pequeño (diámetro de unos 20 a 50 metros) como para causar un daño grave en el suelo, también dependería mucho del ángulo de impacto. Pero lo que sabemos ahora mismo es que podria sobrevolar la Tierra a una distancia de unos 5 millones de kilometros! de nosotros. Lo podéis comprobar en el gráfico de órbitas que se puede consultar en la página de Jet Propulsion Laboratory (JPL). Podemos elegir la fecha y ver la distancia que va tomando el objeto.

Trayectoria del asteroide en su acercamiento a la Tierra, lo podéis ver y jugar con el gráfico pulsando aquí.

De todas formas estas distancias pueden variar pues está muy lejos y pueden haber oscilaciones en su órbita que varíen mucho las cifras, estaremos pendientes, pero ya os digo que probablemente ni roce la Tierra.

Este asteroide es un asteroide de tipo Apolo, un objeto cercano a la Tierra o NEA, pero ¿qué significa esto?

Los NEAs (Near Earth Objects-objetos cercanos a la Tierra), son asteroides eyectados del cinturón principal de asteroides, o cometas extintos provenientes del cinturón de Kuiper  que se encuentran en órbitas muy cercanas a la Tierra y algunos de ellos incluso llegan a cruzan su órbita, con el consiguiente peligro de impacto. Suelen ser órbitas excéntricas y con perihelios cerca de 1,3 UA. Los NEAs de tipo asteroidal provienen del Cinturón principal ya que debido a resonancias con Júpiter varían su órbita y se trasladan a órbitas menores de 1,3UA.

El cinturón principal de asteroides tiene unos huecos, los llamados huecos de Kirkwood[ que son las zonas donde se producen estas resonancias,  cuando un asteroide entra en esos huecos es lanzado por Júpiter hacia el interior del Sistema Solar o fuera de él, ya que va variando la órbita del asteroide. Una vez convertidos en objetos cercanos a la Tierra sobreviven en su órbita unos pocos millones de años hasta que son eliminados por degradación orbital  colisionando con el Sol o con los planetas interiores.

Podemos agruparlos en tres grupos:

Tipo meteoroide, que son de tamaño menor a 50m.

Tipo asteroide, que pueden ser tamaños entre 50m y decenas de Kilómetros.

 –Tipo cometa, que son cometas extintos que ya no tienen elementos volátiles y que han quedado atrapados en órbitas cercanas al Sol.

Nos centraremos en los NEAs tipo asteroide. Estos se clasifican en tres grupos: Amor, Apolo y Atenas (llamados grupo AAA), desde los más alejados a la tierra como es el caso del tipo Amor, hasta los más cercanos y peligrosos que son los de tipo Atenas (o Atón). En la figura podemos ver las órbitas de estos asteroides:

órbitas de NEAs

 Órbitas de los NEAs-figura del autor.

-Asteroides Amor: tiene su radio orbital medio entre las órbitas de la Tierra y Marte, con un perihelio de entre 1.017 y 1,3 UA de la Tierra, y con un afelio muy grande ya que son órbitas excéntricas. Estos a menudo cruzan la órbita de Marte e incluso de Júpiter, pero no llegan cruzan la órbita de la Tierra, a no ser que por alguna perturbación sufrieran algún cambio en su órbita y llegaran a cruzar la órbita terrestre. Pero es muy inusual en esta familia de asteroides. Su nombre es debido al descubrimiento del asteroide (1221)Amor por el astrónomo Eugène Joseph Delporte desde el observatorio de Uccle (Bélgica), el 12 de marzo de 1932.

Es un conjunto de asteroides muy disperso con lo que a su vez se dividen en cuatro subgrupos: Amor I, II, III y IV. Los del grupo Itienen su semieje mayor entre la Tierra y Marte, es decir entre 1UA y 1,532UA, se les considera parte del cinturón de asteroides Tierra-Marte. El grupo II se encuentra entre 1,532 UA y 2,12 UA que es la zona interior del CP. El grupo Amor III llega desde los 2,12 UA hasta el extremo exterior del CP (unos 3,57UA), este es el grupo más poblado de los asteroides Amor. Finalmente el grupo IV tiene semieje mayor de 3,57 UA, es decir mayor que el extremo superior del Cinturón Principal de asteroides, es el menos poblado y además poseen gran excentricidad entre 0,6 y 0,75.

-Asteroides Apolo. Su órbita discurre por el exterior de la órbita de la Tierra, pero debido a que su perihelio es inferior a 1UA pueden cruzar la órbita de nuestro planeta. Su nombre proviene del asteroide (1862) Apolo descubierto por el astrónomo Karl Reinmuth en 1932. Se han descubierto cientos de estos asteroides, de decenas de Km. algunos de ellos como por ejemplo (1866) Sísifo de aproximadamente 10 km y el que nos ocupa en esta entrada el 2006 QV 89 de entre 20 a 50 metros.

-Asteroides Atenas (Atón). Son los más peligrosos para la Tierra. Tienen un semieje  menor de 1UA, pero tienen órbitas muy excéntricas, por tanto estos no tienen por qué estar dentro de la órbita de la Tierra, de hecho la mayoría tienen un afelio de más un 1UA y cruzan la órbita de la Tierra. Son complicados de descubrir por su cercanía al Sol y por tanto muy peligrosos, reciben el nombre del asteroide (2062) Atón un asteroide rocoso de 1km descubierto en 1976 por E.F.Helin. A los asteroides Atenas más peligrosos para la Tierra por su órbita y tamaño se les denomina PHA (asteroide potencialmente peligroso). Se les considera así cuando su distancia mínima de intersección con la órbita terrestre es de 0,05UA, y que además tengan una magnitud de brillo absoluta de 22.0 o más brillante.

Cuando hablamos de magnitud absoluta de asteroides nos referimos a la magnitud que un observador observaría si el asteroide estuviera a una distancia de 1UA del Sol y con ángulo de fase cero (ángulo entre el Sol y la Tierra visto desde el centro de la Tierra).

A partir de la magnitud y del albedo del asteroide se puede dar un rango de tamaños para este. Ya que el albedo no se conoce exactamente se toma por definición un albedo estándar de entre 0.25 a 0.05. A partir de ahí se obtiene para cada magnitud una tabla de rangos aproximados de diámetros de asteroides. Como podemos ver en la siguiente tabla  a modo de ejemplo.

Captura

 Magnitudes absoluta (H) de Asteroides y su relación con su tamaño, se puede observar como a mayor magnitud menor diámetro

-Dentro de los asteroides Atenas hay un subgrupo de asteroides llamados asteroides Apohele (IEOs – Inner Earth objets) que tienen la particularidad de tener un perihelio y un afelio menor que 1UA, es decir están en órbitas interiores a la órbita de la Tierra y por tanto no interceptan la órbita nuestro planeta.

Debido a la alta peligrosidad de estos grupos de asteroides se han elaborado diversos programas de seguimiento y de búsqueda de NEAs, ya que un posible impacto con un asteroide podría llegar a provocar desde una gran catástrofe hasta una gran extinción.

NASA en colaboración con la fuerza aérea de EEUU tiene varios programas de seguimiento de objetos cercanos a la Tierra, entre ellos el programa NEAT (Near Object Earth program). Este programa usó para este propósito, desde 1995 hasta el año 2000, el telescopio GEODSS (seguimiento de satélites), que es utilizado normalmente por personal de la fuerza aérea. Está ubicado en Haleakala (Hawái) y utiliza una cámara CCD de 4096×4096 píxeles y un campo de visión de 1.2×1.6 grados  para seguimiento y búsqueda de objetos cercanos a la Tierra.  A partir del año 2000 se utilizó el telescopio AMOS de 1,2 m que es más operativo pues se puede usar más noches al año. En 2001 se unió a la búsqueda el telescopio Schmidt de Monte Palomar (California) que tiene tres cámaras CCD de las mismas características que el GEODSS.  El programa NEAT básicamente observa la misma parte del cielo tres veces en un intervalo de una hora, se transmiten automáticamente los datos para la búsqueda de objetos en movimiento por comparación con las tres imágenes.

Otro proyecto que opera junto a NEAT es el proyecto LINEAL del laboratorio Lincolm del MIT financiado por la NASA y la fuerza aérea de EEUU. Utiliza la tecnología para seguimiento de satélites usándola para la búsqueda y seguimiento de objetos menores.  Utiliza los telescopios GTS-2 de diseño idéntico a los GEODSS de vigilancia de satélites. Los laboratorios están en los terrenos del White Sands Missile Range de la fuerza aérea en Socorro (Nuevo México). Aproximadamente el 50% de los asteroides conocidos en el sistema solar han sido descubiertos por el programa LINEAR..

Aunque muy peligrosos para la Tierra, su estudio nos puede revelar cómo se formó nuestro sistema solar

Estaremos pendientes de este asteroide que el 9 de septiembre se aproximará a la Tierra. Es muy importante que se investiguen mucho más este tipo de objetos pues sí en algún momento se produce un impacto en la Tierra seria devastador, es importante no solo su seguimiento si no también tener herramientas para desviarlos o destruirlos, y de momento estamos totalmente desprotegidos, es una amenaza real y normal en el sistema solar, solo tenéis que ver como es la Luna, la suerte que tenemos es nuestra maravillosa atmósfera, nuestra Luna que recibe muchos impactos e incluso el gigante Júpiter que es una gran aspiradora de objetos, pero… la amenaza siempre estará ahí.

Programas de simulación del firmamento y de la galaxia

Existe una multitud de software astronómico para simular en tu ordenador el firmamento, con estos se trata de saber en cada momento que constelaciones y objetos se pueden apreciar, y también viajar por el espacio hasta los objetos astronómicos más increíbles que os podáis imaginar de la galaxia y de fuera de esta, y todo sin despegaros del ordenador. En esta entrada os voy a hablar de los tres que creo mejores para empezar a conocer el cielo y los objetos que lo componen:

1.- Celestia: Es un software planetario gratuito, que nos posibilita explorar el Universo en tres dimensiones, simular viajes a través de nuestro sistema solar, viajar a más de 100.000 estrellas de la vía láctea o incluso fuera de nuestra galaxia. Se puede descargar en la siguiente página:

www.celestia.es

Programa Celestia

2.- Worldwidetelescope: Es un programa creado por Microsoft que muestra el cielo en 3D, así como datos de ciencias de la Tierra. Tiene vídeos guiados y posibilidad de grabar nuestros propios vídeos. Se puede usar y disfrutar en la siguiente página:

www.worldwidetelescope.org


Programa Worldwidetelescope

3.- Stellarium: es un programa gratuito de código abierto. Es capaz de mostrar un cielo realista en 3D. Sólo especificando las coordenadas de tu ubicación tienes el cielo que hay en ese momento sobre tu localidad, puedes ver las constelaciones, sus objetos, miles de estrellas y datos de cada uno de estos objetos. Se puede descargar desde la siguiente página:

stellarium.org/es

De este programa os he hablado bastante en el blog, con lo que tenemos varios vídeos explicando su uso.

Espero que estos programas de simulación del firmamento y de la galaxia os sirvan para conocer un poco más el maravilloso Universo.

Planetarios astronómicos, lugares donde disfrutar de la ciencia con todos los sentidos

Los planetarios constituyen una herramienta excepcional para la enseñanza de conceptos relacionados con la astronomía y todas las ciencias afines a la misma, hace posible que personas de todas la edades se aficionen, a través de todas las actividades que se realizan, del maravilloso mundo del Cosmos.


Planetario Galileo Galilei de la Ciudad de Buenos Aires

Un planetario consta básicamente de las siguientes partes: Un cúpula semiesférica para proyecciones, una sala de proyecciones con asientos inclinados, el proyector, salas para exposiciones y salas para conferencias. También existen los llamados planetarios portátiles que son pequeños e hinchables, que se pueden transportar y ubicar en cualquier sitio para actividades de proyecciones para grupos muy reducidos.

Pero nos vamos a centrar en los grandes planetario, en estos se pueden realizar actividades espectaculares con las proyecciones, como por ejemplo recrear el cielo, conocer las constelaciones, viajar por el espacio, ver vídeos interactivos o incluso aprender astronomía de posición (coordenadas celestes, recreación de eclipses, ocultaciones…etc). Es como ver las estrellas pero desde un sillón cómodamente sentado y de forma muy activa.

Planetario de Shangai (China)

En un planetario a parte de las proyecciones astronómicas se suelen realizar las siguientes actividades:

  • Congresos, seminarios y jornadas.
  • Eventos astronómicos y observaciones públicas
  • Cursos de astronomía
  • Proyecciones de planetario
  • Talleres de ciencia
  • Exposiciones permanentes e itinerantes
  • Comunicación de la ciencia en redes sociales

Tipos de sistemas de proyección para planetarios:

La estrella del planetario es su proyector que es el aparato que nos recrea el cielo estrellado sobre la cúpula. Es un sistema complejo que consigue una imagen realista del cielo con mucha precisión, reproduce el movimiento en el cielo de miles de estrellas, podemos ver también el movimiento del Sol, la Luna, los planetas visibles a simple vista, proyectar coordenadas celestes, figuras de las constelaciones, nebulosas, galaxias, cúmulos, la Vía Láctea, el Sistema Solar visto desde afuera, estrellas fugaces, satélites artificiales, e incluso simular nubes, el atardecer, anochecer….

Pueden haber varios tipos, los óptico-mecánicos, vídeo digital, láser e híbridos (óptico-mecánicos y digitales).

El primer proyector que se construyó fue uno del tipo óptico-mecánico, desarrollado por Carl Zeiss en Alemania en 1928. Consistía en unas placas de metal con pequeños orificios perforados para estrellas, estas placas estaban sobre una bombilla que al encenderse se hacia la proyección sobre una cúpula.

Proyector Zeiss más moderno

Básicamente tienen un movimiento de giro para simular el movimiento de la Tierra, y diversos proyectores auxiliares para el Sol o la Luna, la dos esferas son para representar el cielo del hemisferio sur celeste y las del hemisferio norte celeste, y el eje que las une representa el eje de precesión o de la eclíptica. Como veis son unos sistemas muy complejos, pero lo deben ser para obtener una recreación fiable del cielo nocturno.

Os recomiendo visitar algún planetario y descubriréis maravillas, aquí os dejo los enlaces a algunos planetarios de España y del resto del mundo. Sí no aparece alguno de vuestro país, investigar un poco y sí podéis acudir a uno, es una forma de empezar a conocer el Cosmos, luego las estrellas en nuestro planetario real que es el cielo nocturno nos parecerán mucho más comprensibles. Es una herramienta educativa muy recomendable.

Algunos Planetarios en España:

Planetario de Castellón, fundado en 1991, es un precioso planetario junto a la playa de Castellón, tiene una enorme cantidad de actividades a lo largo del año.

Planetario de Castellón

Planetario de Pamplona, es uno de los más visitados de España, se fundó en 1993.


Deep Sky – Cielo profundo , una de las proyecciones hechas en el planetario de Pamplona

Planetario de Madrid, fundado en 1986 tiene una amplia y preciosa oferta divulgativa. La visita es realmente espectacular.

Planetario de Barcelona, tenemos dos el municipal y el de CosmoCaixa, ambos muy interesantes, y con proyecciones espectaculares.

El Hemisfêric de Valencia, sencillamente impresionante, está en las Ciudad de la Ciencias y las Artes de Valencia, un enclave espectacular que no deja indiferente a ningún viajero amante de la Ciencia.


Vídeo conmemorativo del 20 aniversario del Hemisfèric

Algunos planetarios en el resto del mundo:

Recursos de Astronomía para los más peques en la red

En internet hay multitud de recursos para que los más pequeños de la casa puedan aprender de forma fácil y didáctica las maravillosas ciencias del espacio, pero nos vamos a centrar en dos sitios espectaculares y muy rigurosos, la agencia europea del espacio (ESA) y la Administración Nacional de la Aeronáutica y del Espacio de EEUU (NASA).

En todas ellas tenéis concursos, recursos para profesores, vídeos, presentaciones, juegos, descarga de todo tipo de documentos para aprendizaje del espacio, aventuras… todo un mundo para que los niños y niñas se introduzcan de manera amena en el maravilloso mundo del Cosmos:

Comenzamos con la página de la ESA:

https://www.esa.int/kids/es/Home


Y esta es la página de la NASA:

https://www.nasa.gov/kidsclub/index.html

Otros recursos:

Telescopios para los más peques en Amazon

Nuevos estudios revelan la curiosa forma de la Vía Láctea

La forma de nuestra galaxia se está perfilando aun más con nuevas investigaciones, la Vía Láctea es una galaxia espiral barrada pero con una forma peculiar… su disco está doblado por un lado y por el otro en forma contraria. Astrofísicos Chinos y Australianos estudiando la posición y distancia de 1339 estrellas de referencia, de las cuales podemos saber su distancia, han descubierto esa forma tan curiosa de nuestra galaxia, está doblada por los bordes. Las estrellas de referencia que se ha utilizado son las llamadas estrellas cefeidas.

Imagen recreada de la forma de nuestra galaxia. Créditos: Chau Liu (academia China de las ciencias).

Las estrellas Cefeidas son estrellas variables muy luminosas, de 500 a 300.000 veces más grandes que el Sol. Son variables pulsantes que se expanden y encogen en un corto período de tiempo siguiendo un patrón específico. Los astrónomos pueden realizar mediciones de distancia a una cefeida midiendo la variabilidad de su luminosidad, lo que las hace muy valiosas para la ciencia. De echo fue el estudio de una estrella Cefeida la que nos cambio la visión del Universo, lo hizo el famoso astrónomo estadounidense  Edwin Hubble.
Hasta principios del siglo XX, se pensaba que nuestra Galaxia era el Universo. Estudios de luminosidad de estrellas Cefeidas realizados por el Edwin Hubble demostraron que existen estructuras muy lejanas, exteriores a la vía láctea, la llamada en la época “nebulosa de Andrómeda” no era más que otra galaxia a 2.4  millones de años luz. Por tanto descubrimos que nuestra galaxia era una más de las otras miles de millones de nuestro Universo.

Aún es más curiosa nuestra galaxia, La burbuja de Fermi

La siguiente ilustración muestra la luz de varios cuásares distantes atravesando la mitad norte de las llamadas burbujas de Fermi. Estas enormes burbujas son dos grandes estructuras de rayos gamma que se extienden a ambos lados del centro galáctico de la Vía Láctea, se cree que son debidas a una enorme expulsión de gases emitidos desde el agujero negro que tenemos en el centro de la galaxia. El telescopio espacial Hubble sondeó la luz de estos cuásares para obtener información sobre la velocidad del gas de la burbuja y si el gas se está moviendo hacia o lejos de la Tierra. En base a la velocidad del material, se ha estimado que las burbujas se formaron a partir de un evento muy energético  hace entre 6 y 9 millones de años.

burbuja vía láctea

El diagrama de la parte inferior izquierda muestra la medición del gas que se mueve hacia y fuera de la Tierra, (azul acercamiento y rojo alejamiento) lo que indica que el material se desplaza a una velocidad alta hacia nosotros.

Hubble también observó la luz de los cuásares fuera de la burbuja del lado norte del centro galáctico, observando un tipo de gas que no comparte las mismas características que la burbujas de Fermi y que está estático dentro de la galaxia.

El futuro de la Vía Láctea

La galaxia de Andrómeda (M31) se está aproximando hacia nuestra galaxia, la Vía Láctea, a unos 300 km/s, en aproximadamente 3.000 a 5.000 millones de años se producirá la colisión, fusionándose ambas y formando una galaxia elíptica gigante. En esta simulación se muestra la futura colisión contra nuestra galaxia:


En el vídeo: 1 segundo ~ 1.000.000 años. Distancia desde el observador ~ 10.000 años luz (94.605.280.000.000.000 Km)

Realmente espectacular, ¿quedará alguien o algo vivo en la Tierra para verlo cuando la galaxia de Andrómeda choque contra la vía láctea?¿estaremos en otros planetas? en 3000 millones de años se desvelará el misterio.

Para saber más:

Artículo del descubrimiento: An intuitive 3D map of the Galactic warp’s precession traced by classical Cepheid

La Vía Láctea, nuestra casa

Estrellas Cefeidas

Un descubrimiento inesperado a través del cúmulo globular NGC 6752

Los astrofísicos que utilizan el Telescopio Espacial Hubble para estudiar algunas de las estrellas más antiguas y débiles del cúmulo globular NGC 6752 han hecho un descubrimiento totalmente inesperado. Han descubierto detrás del fondo de estrellas una galaxia enana en nuestra zona cósmica, a solo 30 millones de años luz de distancia. Podéis ver la galaxia en la siguiente imagen:

La galaxia enana se puede observar en la parte central izquierda de la imagen, es una galaxia muy pequeña de unos 3000 años luz de diámetro, se la clasifica como galaxia enana esferoidal. Créditos:ESA / Hubble, NASA, Bedin et al.

Ha esta nueva vecina cósmica se la ha llamado Bedin 1, en honor a sus descubridores y es una de las decenas de galaxias enanas que siguen a la Vía Láctea, estas galaxias son muy débiles, con poca cantidad de polvo, poca luminosidad y de forma casi esférica.


Esta imagen compuesta muestra la ubicación de la galaxia enana Bedin 1, detrás del cúmulo globular NGC 6752. Créditos:ESA / Hubble, NASA, Bedin et al., Digitalized Sky Survey 2

Esta galaxia enana se ha encontrado mientras se estudiaba un cúmulo globular, pero ¿Qué es un cúmulo globular?:

Los cúmulos globulares son grupos casi esféricos de cientos de miles (o millones) de estrellas que están ligadas entre sí y que orbitan en torno a las galaxias de manera similar a los satélites. Son agrupaciones de las estrellas más viejas de la galaxia, con edades superiores a los 10.000 millones de años, ya que se formaron a la par que nuestra galaxia. En la Vía Láctea se conocen cerca de 150 grupos de este tipo, aunque en otras galaxias hay cientos más incluso miles, por ejemplo la galaxia de Andrómeda tiene unos 500.

Los cúmulos globulares se encuentran en el halo galáctico, muy por encima y por debajo del disco delgado de la galaxia que contiene la mayoría de las estrellas y los cúmulos abiertos más jóvenes. Como ejemplo de uno de estos cúmulos está el espectacular cúmulo NGC 6535.

NGC6535_Nasa

NGC 6535. Imagen: ESA / Hubble / NASA / Gilles Chapdelaine.  El cúmulo globular NGC 6535 se encuentra la constelación de la  Serpiente aproximadamente a 22.000 años luz de distancia.

Estos cúmulos tan ancianos contienen una gran cantidad de estrellas rojas de baja masa y estrellas amarillas de masa intermedia. Los cúmulos globulares son objetos muy antiguos y su estudio es importante para saber la evolución de las galaxias.

Para saber más:

Noticia del descubrimiento

Radioastronomía, una nueva visión del Universo

La radiastronomía es una de las herramientas de observación del Universo, más desarrolladas, con más alta tecnología y más premiada de la astrofísica. Es una rama relativamente joven, ya que nació en los años 30 del siglo pasado. Sus instrumentos son los llamados radiotelescopios, que los podéis distinguir por que son enormes antenas parabólicas (platos enormes) que apuntan hacia el cielo, también hay otra forma que son enormes dispositivos de cables (dipolos) colocados de manera que detectan la radiación celeste en esta región, y también se aprovecha de la resolución de los interferometros, es decir colocar varias antenas para detectar un mismo objeto, al conectar varias antenas pequeñas, los astrónomos pueden “simular” una antena grande con el diámetro igual a la separación más grande entre los elementos.

La radioastronomía detecta las ondas de radio emitidas por los objetos celestes. ¿Cómo se detectan? las ondas de radio que provienen del espacio, rebotan en la superficie del plato (antena) y se enfocan en un equipo electrónico: el receptor. Esto convierte la onda de radio en una señal eléctrica que se puede medir.

Nosotros vemos el mundo que nos rodea, porque nuestros ojos detectan luz visible, un tipo de radiación electromagnética diferente a las ondas de radio. Los objetos en la Tierra y en el espacio también emiten otros tipos de radiación electromagnética que el ojo humano no puede ver, como las ondas de radio. El rango completo de todas las ondas electromagnéticas radiantes se denomina espectro electromagnético:

opacidad-atmosferica

En la primera gráfica vemos las ventanas de observación desde la Tierra, que son el visible, el infrarrojo cercano y radio. En la gráfica de la parte de abajo vemos las ventanas y los métodos para observar esas longitudes de onda, por ejemplo desde Tierra usamos telescopios  y radiotelescopio, pero si queremos observar en infrarrojo lejano, o en longitudes de onda corta (Gamma, ultravioleta..) tenemos que usar satelites fuera de la atmósfera, pues la atmosfera bloquea esa radiación. Gráfico: http://spoon.astro.cornell.edu/crashcourse/atmospheric.transmission.jpg.

Por lo tanto los radiotelescopios detectan ondas de radio, cuya frecuencia va desde el milímetro hasta varios metros. Una de las fantásticas ventajas de la radioastronomía es que las ondas de radio son transparentes a la atmósfera (como podemos ver en la gráfica de arriba), es decir, no son absorbidas por esta, al igual que ocurre en la región visible del espectro (que es la región de la astronomía óptica, es decir lo que podemos ver con nuestro ojos). Y además y otra de las ventajas es que la atmósfera no dispersa la luz de radio, de modo que es posible observar de día, cuando el sol está sobre el horizonte.

Grandes radiotelescopios del mundo:

Observatorio ALMA (Atacama Large Millimeter / submilimeter Array ) se encuentra en el desierto chileno de Atacama a 5000 m de altitud.
ALMA utiliza 66 antenas parabólicas de alta precisión de dos tamaños: 54 de ellas miden 12 metros de ancho y 12 de ellas miden 7 metros de ancho.
Es un radiotelescopio que puede estudiar la luz cósmica que se encuentra en el límite entre la radio y el infrarrojo. Proporciona una capacidad sin precedentes para estudiar los procesos de formación de estrellas y planetas. Sin impedimentos por el polvo que oscurece las observaciones de luz visible, ALMA revela los detalles de estrellas jóvenes en formación y muestra planetas jóvenes aún en proceso de desarrollo.


El Atacama Large Millimeter / submilimeter Array es el observatorio astronómico más complejo jamás construido en la Tierra

China tiene uno de los más grandes radiotelescopios del mundo, denominando FAST permitirá a los astrónomos poner en marcha grandes investigaciones, por ejemplo, la topografía del hidrógeno neutro en la Vía Láctea, detectar pulsares débiles, búsqueda de las primeras estrellas que brillaron en el firmamento o escuchar las posibles señales de otras civilizaciones entre otras muchas aplicaciones. Apodado Tianyan, “ojo Celestial” o “el ojo del cielo”, está situado en la depresión Dawodang, una cuenca natural en el  suroeste de China.

fast

Radiotelescopio FAST. Está financiado por la Comisión Nacional de Desarrollo y Reforma (NDRC) y administrado por los observatorios astronómicos Nacionales (NAOC) de la Academia China de Ciencias (CAS),y el gobierno de la provincia de Guizhou como un socio de cooperación. Créditos:  Five-hundred-meter Aperture Spherical Telescope (FAST)

La construcción del proyecto de FAST se inició en 2011 y se ha completado en julio de 2016. Mide 500 m de diámetro y se ha diseñado a partir del gran radiotelescopio de Arecibo.

comparacion

Gráfico: Comparación de tamaño con otros radiotelescopios del mundo.

Algunos objetos observados por radiotelescopios:

Centaurus A o también conocida como NGC 5128, se encuentra a 11 millones de años luz de nosotros, en la constelación de Centauro, siendo la radiogalaxia más cercana a la Tierra. Se formó por una colisión de dos galaxias, creando una fantástica mezcla de cúmulos de estrellas jóvenes azules, regiones rosáceas y enormes bandas de polvo oscuro.

centaurus1ESO

Imagen compuesta de Centaurus A, dejando al descubierto los lóbulos y los chorros que emanan del agujero negro central de la galaxia activa. Esta es una composición de imágenes obtenidos con tres instrumentos, que operan a muy diferentes longitudes de onda. Créditos: ESO/WFI (Optical); MPIfR/ESO/APEX/A.Weiss et al. (Submillimetre); NASA/CXC/CfA/R.Kraft et al. (X-ray)

Astrónomos del Centro Nacional de Radio Astrofísica (NCRA, TIFR) utilizando el Radiotelescopio Metrewave (GMRT) descubrieron en 2015 una galaxia de un tamaño enorme. Esta galaxia conocida como J021659-044920 esta situada a 9 mil millones de años luz de distancia hacia la  constelación de Cetus. Es de un tamaño gigantesco, la friolera de 4 millones de años luz de diámetro. Estas galaxias con un tamaño de radioemisión tan grande se llaman radiogalaxias gigantes.

radiogalaxi

Esta es una imagen óptica de J021659-044920 en la que podemos apreciar los enormes lóbulos de radio (en rojo-amarillo). El agujero negro supermasivo de la galaxia está en el centro (zoom en el recuadro), ese agujero negro ha dado lugar a la formación de los lóbulos de radio gigantes.Crédito de la imagen: Prathamesh Tamhane / Yogesh Wadadekar.

El agujero negro supermasivo en el centro de la galaxia impulsa chorros de plasma caliente en direcciones diametralmente opuestas, que finalmente dan lugar a enormes lóbulos de radio, lóbulos que duraran unos pocos millones de años.

El desvanecimiento de los lóbulos se produce porque su energía se pierde de dos maneras: mediante la emisión de ondas de radio, que aparecen como los lóbulos de radio gigantes, y mediante la transferencia de energía a los fotones del fondo cósmico de microondas a través de un proceso conocido como dispersión inversa de Compton. Este último mecanismo lleva al desvanecimiento de la emisión de rayos X que se ven emanar de los lóbulos de radio de esta enorme galaxia.

La próxima generación de radiotelescopios:

El futuro es el Very Large Array (ngVLA) de próxima generación, un nuevo radiotelescopio para la década de 2030, este ofrecerá enormes avances en nuestra comprensión de la formación y evolución de las galaxias. Con una mejora de diez veces en la sensibilidad, así como una mejora de 30 veces en la resolución angular, el ngVLA permitirá realizar grandes estudios estadísticos y podrá captar imágenes de la población dominante en los núcleos de galaxias activos, que suele albergar jets de radio con extensiones subgalácticas, sobre un gran volumen cósmico.

Como veis la radioastronomía es una rama espectacular para desvelar los grandes misterios del Cosmos.

Para saber más:

https://public.nrao.edu/radio-astronomy/what-is-radio-astronomy/

Observatorios en el desierto de Atacama