Archivo de la etiqueta: Exoplaneta

Ponle nombre a una estrella y a un planeta

El proyecto llamado NameExoWorlds quiere darle nombre a una estrella y a un planeta como un proyecto global en celebración de los 100 años de IAU (Unión astronómica internacional) , para ello ha elegido un sistema estelar para cada país del mundo, tan solo hay que elegir uno de los nombres propuestos o proponer otros.

Los nombres elegidos se anunciarán en diciembre de 2019, y se tiene hasta el 12 de noviembre para elegir o proponer nombres para cada país.

Para más información acerca de las reglas para nombrar los sistemas estelares y saber los sistemas asignados a cada país se puede encontrar aquí . Puedes encontrar también el el cronograma para enviar propuestas y votar en tu país en la sección Participar . 

encontrada agua en un exoplaneta potencialmente habitable

Con la ayuda del telescopio espacial Hubble se ha detectado por primera vez vapor de agua en la atmósfera de un exoplaneta potencialmente habitable. El exoplaneta llamado k2-18b se encuentra a 110 años luz de distancia y es una super Tierra, su tamaño es dos veces el de nuestro planeta, y por la distancia a su estrella se encuentra en la llamada zona de habitabilidad, una zona en la que el agua podría estar en estado líquido en su superficie.

Impresión artística del planeta K2-18 b, se puede ver a su estrella enana roja y otro planeta acompañante en el sistema. Créditos: ESA / Hubble, M. Kornmesser

El exoplaneta puede que tenga un núcleo sólido de roca o hielo rodeado por una envoltura gruesa de hidrógeno, vapor de agua y otros gases. Encontrado por el telescopio Kepler en 2015, el mundo se encuentra en una órbita de 33 días alrededor de una fría estrella enana roja en la constelación de Leo. Esa estrella brilla con menos del 3 por ciento de la luminosidad de nuestro sol, pero debido a que K2-18 b orbita muy cerca de ella, el exoplaneta recibe un 5 por ciento más de luz estelar que nuestro planeta. 

Para determinar su atmósfera se ha utilizado el método del tránsito de detección de exoplanetas, este consiste en observar fotométricamente la estrella y detectar sutiles cambios en la intensidad de su luz cuando un planeta órbita por delante de ella. Esa pequeña variación en el brillo de la estrella fruto del tránsito del Exoplaneta nos puede determinar muchos parámetros, como profundidad de tránsito, tamaño del planeta, atmósfera, zona de habitabilidad.

Captura
Curva de brillo en función del tiempo de un tránsito

A partir de la curva de luz del tránsito se determina el cociente de radios planeta/estrella y la inclinación orbital, además de otros parámetros de la estrella y de la órbita. En general, las observaciones de tránsito deben ser complementadas con medidas de velocidad radial para, de este modo, calcular la masa y determinar la naturaleza planetaria del objeto.

Otras aplicaciones de los tránsitos: Determinación de la atmósfera del planeta. Durante el transito y antes de la ocultación el planeta refleja la luz de la estrella y podemos determinar el espectro del planeta y por tanto la composición de su atmósfera. Método muy refinado y complicado pero con muy buenos resultados.

Esto es lo que se ha utilizada para K2-18b, debido a que el planeta transita, parte de esa luz estelar pasa a través de su atmósfera superior en el camino hacia los telescopios, recogiendo y transmitiendo información sobre el cóctel enorme de gases en el aire de K2-18 b.

Para saber más:

Cómo encontrar exoplanetas

4000 exoplanetas descubiertos

Los planetas errantes de la galaxia

Normalmente nos imaginamos a los planetas alrededor de una estrella, pero no siempre es así. También hay planetas que están perdidos en el espacio, son los llamados planetas errantes. La formación de los sistemas planetarios es caótica con lo que algunos planetas son expulsados por otros planetas recién formados o por su estrella progenitora. Estos pueden ser atrapados por otra estrella o simplemente vagar por el espacio eternamente.

Un ejemplo de esto es un planeta errante descubierto en 2016, este viaja libremente en el espacio interestelar. El objeto tiene una edad de tan sólo 10 millones de años y se encuentra a 95 años luz de nosotros, al tener tan poca edad se puede decir que es prácticamente un bebé en una escala de tiempo galáctico, el objeto identificado como 2MASS J1119-1137 tiene un tamaño entre cuatro y ocho veces la masa de Júpiter, y por lo tanto cae en el rango de masa entre una gran planeta y una pequeña estrella enana marrón. Se descubrió utilizando datos de Infrared Survey Explorer (WISE) y otros telescopios terrestres, el exoplaneta errante fue identificado usando una combinación de imágenes ópticas e infrarrojas provenientes de observaciones de grandes áreas del cielo.

Midiendo la velocidad del objeto se ha podido determinar que pertenece al grupo más joven conocido de estrellas que se encuentran en la vecindad solar. Este grupo contiene alrededor de dos docenas de estrellas de 10 millones de años de edad, todas se mueven juntas a través del espacio, y es conocida como la asociación TW Hydrae.

El impresionante movimiento del exoplaneta Beta Pictoris b

El VLT (Very large Telescope) de ESO ha capturado el espectacular movimiento de un exoplaneta alrededor de su estrella anfitriona. En una serie de imágenes desde 2014 hasta 2018 han conseguido seguir y realizar un pequeño vídeo con su movimiento. Se trata de un enorme exoplaneta llamado Beta Pictoris b.

El VLT de ESO ha capturado las imágenes del exoplaneta Beta Picoris b alrededor de la estrella Beta Pictoris. Créditos: ESO

Beta Pictoris b orbita su estrella a una distancia parecida a la que existe entre el Sol y Saturno , aproximadamente 1.3 billones de kilómetros, lo que significa que es el exoplaneta más lejano a su estrella que se haya fotografiado directamente hasta el momento. La superficie de este planeta aún está muy caliente, alrededor de 1500 °C. Estas imagenes se han obtenido con el instrumento SPHERE de investigación de exoplanetas de alto contraste. Podemos ver el movimiento del exoplaneta en este pequeño vídeo:

Créditos: ESO/ Lagrange / SPHERE consortium

La mayoría de los exoplanetas se pueden descubrir por métodos indirectos, pero en el caso del instrumento SPHERE  de VLT puede observar grandes exoplanetas de forma directa, siendo un avance espectacular en la búsqueda de exoplanetas. 

Hablaremos un poco de los métodos más usados para buscar exoplanetas:

– Velocidad Radial, Astrometría, Tránsitos y Visión directa. 

Aunque también hay otros métodos más complicados como medidas de pulso de radio de un púlsar, observando variaciones en binarias eclipsantes o mediante microlentes gravitacionales, pero hablaremos de estos en otras entradas.

1) Velocidad radial: Este método se basa en el Efecto Doppler. El planeta, al orbitar su estrella, ejerce una fuerza gravitacional sobre ésta de manera que la estrella gira sobre el centro de masa común del sistema.

Las oscilaciones de la estrella pueden detectarse mediante pequeños cambios en las líneas espectrales según la estrella se acerca a nosotros (corrimiento hacia el azul) o se aleja (corrimiento al rojo). Es muy buen método para detectar planetas gigantes que estén muy cerca de la estrella.

Captura

La curva de velocidad radial resultante de la presencia de un planeta depende de su masa y de los elementos de su órbita.

2) Astrometría: Como la estrella gira sobre el centro de masa se puede intentar registrar las variaciones de su posición y el movimiento oscilatorio de la estrella. Son oscilaciones muy pequeñas, aun así con este método se encontró un Exoplaneta en 2009, llamado VB10b pues está alrededor de la estrella VB10, una enana roja a 20 años luz de nosotros. VB10b tiene un tamaño de 6 veces el planeta Júpiter.

Captura

Recreación del exoplaneta VB10b alrededor de su estrella

3) Tránsitos: Consiste en observar fotométricamente la estrella y detectar sutiles cambios en la intensidad de su luz cuando un planeta órbita por delante de ella. Esa pequeña variación en el brillo de la estrella fruto del tránsito del Exoplaneta nos puede determinar muchos parámetros, como profundidad de tránsito, tamaño del planeta, atmósfera, zona de habitabilidad.

Captura

Curva de brillo en función del tiempo de un tránsito

A partir de la curva de luz del tránsito se determina el cociente de radios planeta/estrella y la inclinación orbital, además de otros parámetros de la estrella y de la órbita.

En general, las observaciones de tránsito deben ser complementadas con medidas de velocidad radial para, de este modo, calcular la masa y determinar la naturaleza planetaria del objeto.

Otras aplicaciones de los tránsitos: Determinación de la atmósfera del planeta. Durante el transito y antes de la ocultación el planeta refleja la luz de la estrella y podemos determinar el espectro del planeta y por tanto la composición de su atmósfera. Método muy refinado y complicado pero con muy buenos resultados.

Captura

4) Visión directa: es un objetivo primordial actualmente pero tiene un problema, los objetos están muy lejos y quedan emborronados por el brillo de su estrella. La solución a este problema es la observación en un punto, es decir observa un píxel. Las variaciones en la reflexión de la luz sobre el planeta y las modulaciones en el brillo y la temperatura durante su periodo de rotación o de traslación medidas a distintas longitudes de onda pueden ser usadas para deducir las propiedades de su atmósfera y de su superficie.

Es necesario estudiar cómo se vería nuestro propio planeta desde la distancia, con toda su luz concentrada en un solo píxel. Con esta información y por comparación podemos determinar atmósferas y características de otros planetas. Podemos incluso determinar la posible presencia de vida, observando la presencia de biomarcadores.

Los biomarcadores nos abren la puerta a la detección remota de vida, que de otro modo sería inviable hasta un futuro a largo plazo.  La presencia de dióxido de carbono, un gas de efecto invernadero, ozono (que indica oxígeno en abundancia) y trazas de metano puede ser indicativo de un planeta con una temperatura superficial estable y suave con una biosfera. También puede ser importante la detección de óxidos de nitrógeno, que se encuentran a menudo asociados a actividad biológica de tipo bacteriano.

Como veis estos son los métodos más usados aunque hay alguno más mucho más complicado pero que ya sería complicar mucho más esta pequeña entrada. En la siguiente gráfica podéis ver algunos de los exoplanetas descubiertos y su método de descubrimiento:

Captura

Ya sabéis un poco más de la búsqueda de exoplanetas, como veis no estamos solos en el Universo, calculad que sí solo en nuestra galaxia hay 300.000 millones de estrellas y en cada estrella puede haber planetas, con que solo haya uno con posible vida (de cualquier tipo) tendríamos 300.000 millones de planetas con vida, y solo en nuestra galaxia… calculad lo que habría en el resto del Universo…. 

*Para saber más de exoplanetas:

Toda la información sobre Exoplanetas la tenéis en la siguiente página:

http://exoplanet.eu/

TESS: el futuro de la búsqueda de exoplanetas cercanos a la Tierra

El futuro telescopio espacial TESS (Transiting Exoplanet Survey Satellite) es una misión de la NASA y el MIT para la búsqueda de exoplanetas. Después de su lanzamiento en el próximo año 2017, TESS utilizará cuatro cámaras para explorar todo el cielo. La misión estudiará más de 500.000 estrellas, buscando variaciones en su brillo que indiquen el transito de un planeta. Se prevé que TESS encuentre más de 3.000 candidatos a exoplanetas, que van desde gigantes gaseosos hasta pequeños planetas rocosos. Se espera que alrededor de 500 de estos planetas sean similares al tamaño de la Tierra. Las estrellas monitoreadas por TESS serán entre 30 a 100 veces más brillantes que las observadas por Kepler, haciendo observaciones de seguimiento mucho más fácil.

Utilizando los datos de TESS, y de misiones como el Telescopio Espacial James Webb podremos determinar las características específicas de estos planetas como mediciones refinadas de las masas planetarias, tamaños, densidades y propiedades de la atmósfera, incluyendo si podrían soportar la vida.

El legado de TESS será un catálogo de las estrellas más cercanas y brillantes con exoplanetas en tránsito, que comprenderán los objetivos más favorables para investigaciones detalladas en las próximas décadas.

prediccion-tess

Figura: Los tamaños y períodos orbitales de los planetas con estrellas anfitrionas más brillantes que J = 10. Izquierda: Planetas descubiertos actualmente, incluyendo los de las misiones Kepler y CoRoT así como estudios basados en telescopios desde tierra. Derecha: población simulada de detecciones de exoplanetas por el futuro telescopio espacial TESS.

La misión TESS lanza un concurso para todas las edades y niveles de destreza (menos los menores de 18 años que deben tener el permiso de un padre o tutor legal para poder participar). Se pide un dibujo o bosquejo sobre exoplanetas. Las propuestas ganadoras volarán a bordo de la nave espacial TESS, mientras busca nuevos mundos fuera de nuestro sistema solar. Para descargar los folletos pulsa aquí.

tess-concurso

La fecha límite es el 1 de marzo de 2017, o cuando se alcance la capacidad máxima de la unidad de carga para llevar las presentaciones al espacio.

Para saber más:

Página web de TESS (https://tess.gsfc.nasa.gov/). 

cropped-3-3.jpg

Cómo encontrar Exoplanetas

Con la tecnología actual podemos encontrar a muchos exoplanetas, en esta entrada aprenderéis de una forma sencilla las técnicas que se utilizan .

Pero…¿Qué es un Exoplaneta?

En el Universo hay otros sistemas planetarios a parte del nuestro, cuando hablamos de un planeta que órbita otra estrella diferente al Sol se le denomina Exoplaneta o Planeta Extrasolar.

La Formación de Sistemas planetarios es normal en la mayoría de las estrellas, por tanto en la inmensa mayoría de las estrellas hay planetas. Nuestro Sistema Solar se formo desde una nube de gas y polvo.CapturaImagen de la formación de un sistema planetario, al proceso de formación se le denomina agregación.

El primer planeta extrasolar descubierto fue por Aleksander Wolszczan, astrónomo polaco, este anunció en 1992 el descubrimiento de 3 objetos sub-estelares de baja masa orbitando el púlsar PSR1257 + 12 mediante la medición de la variación periódica en el tiempo de llegada de los pulsos de radio de un púlsar. Seguir leyendo Cómo encontrar Exoplanetas