Archivo de la categoría: La Tierra

Los terribles incendios del amazonas desde el espacio

El mes de agosto de 2019 está siendo terrible para la zona del amazonas brasileño y países colindantes (hasta cuatro países afectados), terribles incendios están asolando parte de una de las zonas más importantes para la Tierra, el pulmón de nuestro planeta.  

Créditos: imágenes del Observatorio de la Tierra de la NASA de Joshua Stevens, utilizando datos MODIS de NASA EOSDIS / LANCE y GIBS / Worldview,

Normalmente entre julio y agosto es una temporada seca para la zona y suelen ocurrir incendios, el problema es que muchos están siendo provocados para abrir camino en la selva a las plantaciones de agricultores que no son conscientes del daño que están provocando a la biodiversidad y a la atmósfera planetaria.

Photo by Guduru Ajay bhargav on Pexels.com

La NASA tiene una serie de satelites que están observando la Tierra continuamente, algunos de ellos pueden determinar las áreas quemadas, esto lo hace la sonda espacial MODIS.

Esto se hace mediante el análisis de las reflectividades en distintas zonas del espectro electromagnético, así podemos detectar cambios en la superficie terrestre, por ejemplo se pueden detectar zonas quemadas de forma precisa. Utilizando diversos índices como puede ser el NDVI, y mediante la sustracción de las imágenes posteriores y anteriores a un determinado incendio, se puede localizar y realizar la cartografía de la zona quemada.  Otros índices como el NBR nos dan una visión más directa del área quemada sin necesidad de restar imágenes, os explicaré a continuación qué son esos índices.

Satélite MODIS, créditos: NASA

Para el cartografiado de incendios hay diversas metodologías, todas se basan en la identificación de incendios y posterior delimitación del área quemada. Entre las muchas metodologías podemos hablar de:

a)      Uso de índice BAIM (Burned Area Index) e información tipo “hotspot” (F.Gonzalez et al. 2007).

b)      Determinación de umbrales en la banda del infrarrojo cercano y anomalías térmicas (M. Huesca et al. 2008).

c)      Estimaciones visuales de variación de índices espectrales de la cubierta terrestre, de forma global o regional.

d)      Análisis de separabilidad entre áreas quemadas y no quemadas, a partir del estudio de la separabilidad espectral (S. Opazo et al. 2007).

e)      Métodos multitemporales de detección de cambios. En este estudio se utilizaran índices espectrales para la determinación del área quemada.

      Los índices espectrales son buenos indicadores del efecto de los incendios en el ecosistema y buenos discriminantes del área quemada, por ejemplo:

– 1.- NDVI (Índice de Vegetación de Diferencias Normalizadas) que ya viene implementado en el producto MODIS. Y que se define como:

Captura

 Donde irc es la reflectividad en la banda del infrarrojo cercano y swir la reflectividad en la banda del infrarrojo de onda corta.

– 2.- NBR (Normalized Burnt Ratio) que se trata de un cociente normalizado tipo NDVI, pero con información del infrarrojo cercano y del infrarrojo de onda corta.

Captura

Para estos estudios se utilizan normalmente imágenes del sensor MODIS/TERRA que se pueden adquir gratuitamente desde la página Reverb/echo/Nasa, concretamente se suele utilizar (entre otros) el producto MOD13Q1, que posee una resolución espacial de 250 m y una resolución temporal de 16 días. Este producto incluye las medidas de los índices NDVI y EVI, además de cuatro bandas de reflectividades (azul, rojo, NIR y MIR). También para el proceso de los datos se puede considerar la banda de calidad VI Quality implementada en el producto.

Con todo esto se puede saber exactamente desde el espacio que áreas se han quemado. Aunque lo más importante es que no se produzcan incendios y que no tengamos que delimitar las áreas quemadas, sí nos quedamos sin vegetación nos quedamos sin vida en nuestro precioso planeta.

Para saber más:

Cartografía de áreas quemadas desde el espacio

Página MODIS

Anuncios

Viaja por la Tierra y escucha emisoras de radio

Existe un curioso programa online con el que puedes escuchar, solo desplazándote con el ratón de tu ordenador o con el móvil, sobre cualquier punto del planeta Tierra emisoras de radio.

Se presenta como un globo terráqueo sobre el que hay muchos puntos verdes, cada punto es una emisora de radio, podemos viajar por el mundo y acercarnos o alejarnos de cualquier lugar, y solo con pulsar en cualquier puntito verde escuchar la emisora de cualquier parte de la Tierra.

El programa se llama Radio Garden y lo podéis ver y usar aquí:

http://radio.garden/

Pulsando en cada punto verde es una emisora de radio, podemos viajar con el ratón del móvil o con nuestro móvil por el planeta y escuchar miles de emisoras de radio.

Es bastante adictivo porque es curioso lo fácil que es moverse por el mapa y elegir cualquier emisora de cualquier país del mundo, no os dejará indiferentes y podréis comparar la música, noticias, programas, idiomas y culturas del planeta Tierra, un planeta muy diverso y maravilloso, nuestro maravilloso planeta azul.

Las Capas de la atmósfera de la Tierra

Nuestro planeta tiene una importante atmósfera que nos protege del terrible espacio exterior y que hace posible la vida en la Tierra. Es una enorme capa de gases que tiene una composición de 78% Nitrógeno, 21% oxígeno y otros gases como Argón (0.93%), Dióxido de carbono (0.032%), metano, ozono y vapor de agua. Los elementos más minoritarios como vapor de agua y aerosoles son un 0.002% pero son muy importantes para el clima. Las principales capas de la atmósfera de la Tierra son las siguientes:  

  • Exosfera: 700 a 10.000 km
  • Termosfera: 80 a 700 km 
  • Mesosfera: 50 a 80 km 
  • Estratosfera: 12 a 50 km
  • Troposfera: 0 a 12 km

atmosphere_for_full_export-

Las diferentes capas de la atmósfera terrestre. Créditos: NASA

La temperatura media de la Tierra es de 15ºC, esta temperatura disminuye con la altura hasta que llegamos a la estratosfera que la temperatura cambia pero la presión como es lógico disminuye, así la presión atmosférica, que es mayor a nivel del mar disminuye siempre con la altura, pero la temperatura tiene importantes variaciones según la altura. En la siguiente figura para latitudes medias podéis ver como varía la temperatura:

capas de la atmósfera de la Tierra
Capas de la atmósfera de la Tierra

Veamos un poco cada capa en detalle:

La troposfera es la capa más baja de nuestra atmósfera. Comenzando a nivel del suelo, se extiende hacia arriba a unos 10 km sobre el nivel del mar. Los seres vivos vivimos en la troposfera. La mayoría de las nubes las podemos encontrar aquí, principalmente porque el 99% del vapor de agua en la atmósfera se encuentra en la troposfera. La presión del aire disminuye y las temperaturas se vuelven más frías a medida que asciende en la troposfera como hemos visto en la figura anterior. Dentro de la Troposfera tenemos dos grandes subcapas, la capa planetaria que está a unos 2 km de altura y capa de superficie que llega hasta los 200 metros de altura. En esos dos primeros kilómetros hay muchas turbulencias en la atmósfera ya que hay diferencias de presión, de temperatura y hay también movimientos atmosféricos, lo que se llama fuerza de corriolis. Por tanto en esa zona se producen los grandes vientos y los desplazamientos de nubes, a partir de 2 km el viento no es tan turbulento. Dentro de la capa de superficie con encontramos con la biosfera que llega a unos 5 a 10 metros, esta es donde se encuentra la vida en la superficie y la oceánica. 

La siguiente capa superior se llama la estratosfera. La estratosfera se extiende desde la parte superior de la troposfera, concretamente desde la Tropopausa, que es una zona de transición, hasta unos 50 km sobre el suelo. La importante y vital capa de ozono se encuentra dentro de la estratosfera. Las moléculas de ozono en esta capa absorben la luz ultravioleta de alta energía del Sol. A diferencia de la troposfera, la estratosfera en realidad se calienta a medida que asciendes. Esa tendencia de temperaturas crecientes con la altitud significa que el aire en la estratosfera carece de la turbulencia y las corrientes ascendentes de la troposfera que se encuentra debajo. El aumento de la temperatura se debe a la fotodisociación de moléculas, que suele ser de oxígeno, esto da lugar a la liberación de calor. Tambien la densidad es más baja y hay gran radiación solar, con lo que la mayor absorción provoca un máximo calentamiento. 

Por encima de la estratosfera se encuentra la mesosfera. Se extiende hacia arriba hasta una altura de aproximadamente 85 km sobre nuestro planeta. La mayoría de los meteoros (estrellas fugaces) se desintegran en la mesosfera. A diferencia de la estratosfera, las temperaturas una vez más se vuelven más frías a medida que asciende a través de la mesosfera. La presión del aire en la parte inferior de la capa está muy por debajo del 1% de la presión a nivel del mar y continúa descendiendo a medida que aumenta la altura.

Sobre la mesosfera tenemos la termosfera.  Los rayos X de alta energía y la radiación UV del sol se absorben en la termosfera, elevando su temperatura a cientos o miles de grados.  Muchos satélites orbitan la Tierra dentro de la termosfera. La parte superior de la termosfera se puede encontrar entre 500 y 1.000 km sobre el suelo. Las temperaturas en la termosfera superior pueden oscilar entre aproximadamente 500 °C  y 2,000 °C, pero es tan fina esa capa que allíno notaríamos esa temperatura, tendríamos literalmente frío. También es esta capa es donde se producen las preciosas  auroras polares .

Se considera que la exosfera es la “frontera final” real de la envoltura gaseosa de la Tierra. El “aire” en la exosfera es muy delgado, lo que hace que esta capa sea aún más parecida al espacio que la termosfera.  Diferentes definiciones ubican la cima de la exosfera en algún lugar entre 100,000 km y 190,000 km sobre la superficie de la Tierra. 

Luego tenemos la ionosfera , esta no es una capa distinta como las otras mencionadas anteriormente. En cambio, la ionosfera es una serie de regiones con partes en la mesosfera y en la termosfera donde la radiación de alta energía del Sol ha liberado a los electrones de sus átomos y moléculas. Los átomos y moléculas cargados eléctricamente que se forman de esta manera se llaman iones, que le dan a la ionosfera su nombre y le otorgan a esta región algunas propiedades especiales.

Y estas son las diferentes capas de la atmósfera de la Tierra, como veis son unas zonas muy importantes pues hacen que pueda existir la vida en nuestro planeta. 

 

Las Auroras Polares, cuando el Sol pinta el cielo de colores

Las Auroras polares se llaman Aurora Boreal en el hemisferio norte, más conocida como Northern Lights (luces del norte), y Aurora Australis en el hemisferio sur, también conocida como Southern Lights (luces del sur). Es un fenómeno de colores precioso que se puede observar en el cielo en lugares de la Tierra próximos a los polos.

snow nature sky night
Photo by Stefan Stefancik on Pexels.com

Estas luces se producen cuando el viento solar, que viene con partículas cargadas (electrones, protones y partículas alfa) de alta energía, choca contra el campo magnético de la Tierra, este solo dejar pasar a las partículas por los vórtices del campo que se encuentran en el polo norte y sur.

800px-Magnetosphere_renditionInteracción del viento solar contra el campo magnético de la Tierra. Imagen: NASA

Cuando las partículas golpean la atmósfera cerca de los polos magnéticos, hacen que brille como los gases en una lámpara fluorescente, las partículas cargadas chocan con las moléculas del aire  y forman esos colores tan espectaculares.

molecuas de aireInteracción de las partículas cargadas con el aire. Gráfico: NASA

Son impredecibles pues dependen de la actividad solar, a mayor actividad solar mayor será su probabilidad, intensidad y su duración en el tiempo. La mejor época para observarlas es el otoño e invierno del hemisferio norte y del Sur. Las zonas más buenas para su contemplación son los países más cercanos al polo.

Siempre hay que alejarse de la contaminación lumínica y de las nubes para observarlas en toda su plenitud. La aurora no es visible durante el día, sin embargo, a menudo se puede observar una hora antes del amanecer o después del atardecer, con la noche solo hay que esperar bien abrigados a ver el espectaculo. Pero claro, no hay una hora exacta en la que aparecen, simplemente hay que informarse de posibles tormentas solares y buscar el día adecuado para su observación, sí se va a algún país adrede para verlas, es bueno planificar otras cosas para ver de la región  a la que vayamos por sí no vemos absolutamente nada, ya que la meteorología nos lo podría impedir.

Desde el espacio se observa continuamente nuestra estrella con lo que podemos hacer una predicción aproximada de intensidad y duración de auroras polares, esto lo hace la red de observación NOAA de NASA, el proyecto OVATION da previsiones para tres días.

latest

El modelo de pronóstico de Aurora de OVATION nos muestra la intensidad y la ubicación de la aurora predicha para el tiempo que se muestra en la parte superior del mapa. Este pronóstico de probabilidad se basa en las condiciones actuales del viento solar. Créditos: NASA.

Es un bello espectaculo, muy recomendable incluso desde el espacio… os dejamos un vídeo precioso de NASA donde se aprecian las auroras desde la estación espacial internacional, a unos 400 km de altura.

Las Auroras en otros planetas:

Los instrumentos de telescopio espacial Hubble y la misión Juno capturaron unas impresionantes auroras en el planeta Júpiter y el equipo de científicos del Hubble crearon este precioso vídeo:

Créditos vídeo: NASA, ESA, J. Nichols (University of Leicester), and G. Bacon (STScI); A. Simon (NASA/GSFC) and the OPAL team.

Estas auroras tienen una energía impresionante, se han observado poderosos potenciales eléctricos, alineados al campo magnético, que aceleran los electrones hacia la atmósfera de Júpiter a energías de hasta 400.000 electrones voltio. Esto es 10 a 30 veces mayor que los potenciales aurorales más grandes observados en la Tierra, donde sólo varios miles de voltios son necesarios para generar las auroras más intensas.

Utilizando el Telescopio Espacial Hubble, los astrónomos fotografiaron  en 2013 unas auroras espectaculares sobre el polo norte de Saturno con un nivel de detalles sin precedentes.

Realmente el Universo es maravilloso 🙂

cropped-logi2.jpg

 

 

 

 

 

art astronomy atmosphere aurora borealis
Photo by Visit Greenland on Pexels.com